Funct. Mater. 2021; 28 1: 178-186.
Determination of pressure drop in a fixed bed catalytic reactor during ammonia oxidation on nanostructured platinum catalyst
Institute of Chemistry and Chemistry Technology, Department of Chemical Engineering, Lviv Polytechnic National University, 12 S.Bandery Str., 79013 Lviv, Ukraine
Nanostructured platinum catalyst has been obtained by an electrochemical method. In order to generate the fixed bed, the catalyst was randomly arranged at the perforated bottom of the reactor; the reactor-to-particle diameter ratio was D/dp = 24.5. The effect of the increasing gas velocity on the pressure drop in the fixed beds with a length of 35·10-3, 45·10-3, 55·10-3, 65·10-3 and 75·10-3 m, which were generated in the downflow reactor, has been established by an experimental method. Ergan and Darcy-Weisbach equations have been used as the numerical methods to calculate the pressure drops within the Reynolds number range of 312≤Re≤1177. The difference between experimental and calculated values of the pressure drops was found to be increased with an increase in the Reynolds number. On the basis of the experimental results, the equation ΔP = 49·Reexp-0.11·(H/de)·(dp/D) ·ρ·υ2 has been proposed, which allows us to calculate theoretically the pressure drop in the downflow fixed bed reactor with the developed catalyst within the Reynolds number range of 312≤Reexp≤1177. The maximum relative error between the experimental and theoretical values does not exceed ±3 %.
1. K.C.Sandeep, S.Mohan, D.Mandal et al., Chem. Engin, Sci., 202, 508 (2019). https://doi.org/10.1016/j.ces.2019.02.042 |
||||
2. Z.Sun, D.H.West, V.Balakotaiah, Chem. Engin. J., 377, 119765 (2019). https://doi.org/10.1016/j.cej.2018.08.151 |
||||
3. J.Gomez, J.P.Mmbaga, R.E.Hayes et al., Int. J. Hydrogen Energy, 43, 2677 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.056 |
||||
4. G.Boccardo, R.Sethi, D.L.Marchisio, Chem. Engin. Sci., 198, 290 (2019). https://doi.org/10.1016/j.ces.2018.09.024 |
||||
5. E.Afabor, A.Salama, H.Ibrahim, J. Environ. Chem. Engin., 5, 4850 (2017). https://doi.org/10.1016/j.jece.2017.09.016 |
||||
6. M.H.Abdel-Aziz, I.Nirdosh, G.H.Sedahmed, Int. J. Heat Mass Transfer, 90, 427 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.075 |
||||
7. F.Obeid, J.Zeaiter, A.H.Al-Muhtaseb et al., Energy Conver. Manag., 85, 1 (2014). https://doi.org/10.1016/j.enconman.2014.05.075 |
||||
8. L.Zhang, Sh.Wu, Z.Liang et al., Chin. J. Chem. Engin., 25, 175 (2017). https://doi.org/10.1016/j.cjche.2016.08.032 |
||||
9. A.D.Ballarini, S.R.de Miguel, E.L.Jablonski et al., Catal. Today, 107, 481 (2005). https://doi.org/10.1016/j.cattod.2005.07.058 |
||||
10. M.Bazmi, S.H.Hashemabadi, M.Bayat, Korean J. Chem. Eng., 28, 1340 (2011). https://doi.org/10.1007/s11814-010-0525-8 |
||||
11. K.Tao, Y.Zhanga, S.Terao et al., Catal. Today, 153, 150 (2010). https://doi.org/10.1016/j.cattod.2010.02.061 |
||||
12. K.J.Puolakka, S.Juutilainen, A.O.I.Krause, Catal. Today, 115, 217 (2006). https://doi.org/10.1016/j.cattod.2006.02.034 |
||||
13. F.Pompeo, N.N.Nichio, M.M.V.M.Souza et al, Appl. Catal. A: General, 316, 175 (2007). https://doi.org/10.1016/j.apcata.2006.09.007 |
||||
14. M.M.V.M.Souza, Martin Schmal, Appl. Catal. A: General, 255, 83 (2003). https://doi.org/10.1016/S0926-860X(03)00646-X |
||||
15. Y.Takahashi, T.Yamazaki, Fuel, 102, 239 (2012). https://doi.org/10.1016/j.fuel.2012.05.062 |
||||
16. A.Cherif, R.Nebbali, Int. J. Hydrogen Energy, 44, 22455 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.203 |
||||
17. O.N.Bliznjyk, V.V.Prezhdo, Polish J. Appl. Chem., 47, 65 (2003). | ||||
18. M.V.Manna, P.Sabia, R.Ragucci et al., Fuel, 264, 116768 (2020). https://doi.org/10.1016/j.fuel.2019.116768 |
||||
19. N.Yu.Masalitina, Ph.D.Thesis, National Technical Kharkiv Polytechnical Institute, Ukraine, Kharkiv (2017). | ||||
20. Y.Luo, Y.Shi, S.Liao et al., J. Power Sourc., 423, 125 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.064 |
||||
21. H.Ma, W.F.Schneider, J. Catal., 383, 322 (2020). https://doi.org/10.1016/j.jcat.2020.01.029 |
||||
22. A.S.Noskov, I.A.Zolotarskii, S.A.Pokrovskaya et al., Chem. Engin. J., 91, 235 (2003). https://doi.org/10.1016/S1385-8947(02)00159-6 |
||||
23. A.S.Ivanova, E.M.Slavinskaya, V.V.Mokrinskii et al., J. Catal., 221, 213 (2004). https://doi.org/10.1016/j.jcat.2003.06.001 |
||||
24. Sh.Hui, Q.Yao, D.Wang et al., Energy Procedia, 158, 1497 (2019). https://doi.org/10.1016/j.egypro.2019.01.357 |
||||
25. D.Wang, Q.Yao, Ch.Mou et al., Fuel, 254, 115719 (2019). https://doi.org/10.1016/j.fuel.2019.115719 |
||||
26. M.Baerns, R.Imbihl, V.A.Kondratenko et al., J. Catal., 232, 226 (2005). https://doi.org/10.1016/j.jcat.2005.03.002 |
||||
27. J.Perez-Ramirez, E.V.Kondratenko, V.A.Kondratenko et al., J. Catal., 227, 90 (2004). https://doi.org/10.1016/j.jcat.2004.06.023 |
||||
28. J.Perez-Ramirez, E.V.Kondratenko, V.A.Kondratenko et al., J. Catal., 229, 303 (2005). https://doi.org/10.1016/j.jcat.2004.09.020 |
||||
29. A.Lewera, L.Timperman, A.Roguska et al., J. Phys. Chem. C, 115, 20153 (2011). https://doi.org/10.1021/jp2068446 |
||||
30. K.Kunimori, Y.Ikeda, M.Soma et al., J. Catal., 79, 185 (1983). https://doi.org/10.1016/0021-9517(83)90301-9 |
||||
31. A.K.Datye, D.S.Kalakkad, M.H.Yao et al., J. Catal., 155, 148 (1995). https://doi.org/10.1006/jcat.1995.1196 |
||||
32. M.Sun, J.Liu, C.Song et al., ACS Appl. Mater. Interfaces, 11, 23102 (2019). https://doi.org/10.1021/acsami.9b02128 |
||||
33. E.Fratini, A.Girella, I.Saldan et al., Mater. Lett., 161, 263 (2015). https://doi.org/10.1016/j.matlet.2015.08.117 |
||||
34. I.Saldan, A.Girella, C.Milanese et al., Functional Materials, 25, 82 (2018). https://doi.org/10.15407/fm25.01.082 |
||||
35. Y.Xue, F.Scaglione, P.Rizzi et al., Appl. Surf. Sci., 476, 412 (2019). https://doi.org/10.1016/j.apsusc.2019.01.099 |
||||
36. A.G.Munoz, H.J.Lewerenz, J. Electrochem. Soc., 156, D242 (2009). https://doi.org/10.1149/1.3133185 |
||||
37. A.Pavlisic, R.Ceglar, A.Pohar et al., Powder Technology, 328, 130 (2018). https://doi.org/10.1016/j.powtec.2018.01.029 |
||||
38. A.K.Giri, S.K.Majumder, Chem. Engin.. Res.Design, 92, 34 (2014). https://doi.org/10.1016/j.cherd.2013.07.004 |
||||
39. Z.Guo, Z.Sun, N.Zhang et al., Chem. Engineer. Sci., 209, 115200 (2019). https://doi.org/10.1016/j.ces.2019.115200 |
||||
40. Ch.J.Dittrich, Chem. Engineer. J., 381, 122492 (2020). https://doi.org/10.1016/j.cej.2019.122492 |
||||
41. R.Wu, Y.Fan, T.Hong et al., Appl. Thermal Engineer., 162, 114259 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114259 |
||||
42. G.Su, Yu.Pan, Ya.Zhang et al., Energy, 113, 723 (2016). https://doi.org/10.1016/j.energy.2016.07.077 |
||||
43. Z.Xiang, Ya.Lu, X.Gong et al., J. Hazard. Mater., 173, 243 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.075 |
||||
44. I.Iliuta, F.Larachi, Int. J. of Greenhouse Gas Control, 79, 1 (2018). https://doi.org/10.1016/j.ijggc.2018.09.016 |
||||
45. A.C.N.Preller, North-West University: Potchefstroom, 138 (2011). | ||||
46. S.Sahin, F.Sefidvash, Energy Convers. Manag., 49, 1902 (2008). https://doi.org/10.1016/j.enconman.2007.12.017 |
||||
47. I.Barna, Ya.Gumnytskyi, V.Atamanyuk, Chem. Chem. Technol., 7, 461 (2013). https://doi.org/10.23939/chcht07.04.461 |
||||
48. R.Hosovskyi, D.Kindzera, V.Atamanyuk, Chem. Chem. Technol., 10, 460 (2016). | ||||
49. V.Atamaniuk, I.Huzova, Z.Hnativ, Chem. Chem. Technol., 12, 263 (2018). https://doi.org/10.23939/chcht12.02.263 |
||||
50. T.Zeiser, M.Steven, H.Freun et al., Phil. Trans. R. Soc. Lond. A, 360, 507 (2002). https://doi.org/10.1098/rsta.2001.0945 |
||||
51. L.Davidson, Chalmers University of Technology: Goteborg, Sweden, 50 (2016). | ||||
52. O.Kuntyi, O.Dobrovetska, S.Korniy et al., Functional Materials, 27, 277 (2020). | ||||
53. A.Koekemoer, A.Luckos, Fuel, 158, 232 (2015). https://doi.org/10.1016/j.fuel.2015.05.036 |
||||
54. D.Janecki, A.Burghardt, Gr.Bartelmus, Chem. Engin. J., 237, 176 (2014). https://doi.org/10.1016/j.cej.2013.09.102 |
||||
55. V.Atamanyuk, Ya.Gumnytskyi, Monograph, Lviv Polytechnic Publishing House, Lviv (2013). | ||||
56. R.Havryliv, V.Maystruk, Chem. Chem. Technol., 11, 71 (2017). https://doi.org/10.23939/chcht11.01.071 |
||||