Funct. Mater. 2021; 28 1: 178-186.

doi:https://doi.org/10.15407/fm28.01.178

Determination of pressure drop in a fixed bed catalytic reactor during ammonia oxidation on nanostructured platinum catalyst

D.Kindzera, V.Atamanyuk, O.Dobrovetska, R.Hosovskyi, R.Havryliv

Institute of Chemistry and Chemistry Technology, Department of Chemical Engineering, Lviv Polytechnic National University, 12 S.Bandery Str., 79013 Lviv, Ukraine

Abstract: 

Nanostructured platinum catalyst has been obtained by an electrochemical method. In order to generate the fixed bed, the catalyst was randomly arranged at the perforated bottom of the reactor; the reactor-to-particle diameter ratio was D/dp = 24.5. The effect of the increasing gas velocity on the pressure drop in the fixed beds with a length of 35·10-3, 45·10-3, 55·10-3, 65·10-3 and 75·10-3 m, which were generated in the downflow reactor, has been established by an experimental method. Ergan and Darcy-Weisbach equations have been used as the numerical methods to calculate the pressure drops within the Reynolds number range of 312≤Re≤1177. The difference between experimental and calculated values of the pressure drops was found to be increased with an increase in the Reynolds number. On the basis of the experimental results, the equation ΔP = 49·Reexp-0.11·(H/de)·(dp/D) ·ρ·υ2 has been proposed, which allows us to calculate theoretically the pressure drop in the downflow fixed bed reactor with the developed catalyst within the Reynolds number range of 312≤Reexp≤1177. The maximum relative error between the experimental and theoretical values does not exceed ±3 %.

Keywords: 
nanostructured platinum catalyst, fixed bed reactor, pressure drop, low-temperature ammonia oxidation process, hydraulic resistance, similarity criterion, energy costs.
References: 
1. K.C.Sandeep, S.Mohan, D.Mandal et al., Chem. Engin, Sci., 202, 508 (2019).
https://doi.org/10.1016/j.ces.2019.02.042
 
2. Z.Sun, D.H.West, V.Balakotaiah, Chem. Engin. J., 377, 119765 (2019).
https://doi.org/10.1016/j.cej.2018.08.151
 
3. J.Gomez, J.P.Mmbaga, R.E.Hayes et al., Int. J. Hydrogen Energy, 43, 2677 (2018).
https://doi.org/10.1016/j.ijhydene.2017.12.056
 
4. G.Boccardo, R.Sethi, D.L.Marchisio, Chem. Engin. Sci., 198, 290 (2019).
https://doi.org/10.1016/j.ces.2018.09.024
 
5. E.Afabor, A.Salama, H.Ibrahim, J. Environ. Chem. Engin., 5, 4850 (2017).
https://doi.org/10.1016/j.jece.2017.09.016
 
6. M.H.Abdel-Aziz, I.Nirdosh, G.H.Sedahmed, Int. J. Heat Mass Transfer, 90, 427 (2015).
https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.075
 
7. F.Obeid, J.Zeaiter, A.H.Al-Muhtaseb et al., Energy Conver. Manag., 85, 1 (2014).
https://doi.org/10.1016/j.enconman.2014.05.075
 
8. L.Zhang, Sh.Wu, Z.Liang et al., Chin. J. Chem. Engin., 25, 175 (2017).
https://doi.org/10.1016/j.cjche.2016.08.032
 
9. A.D.Ballarini, S.R.de Miguel, E.L.Jablonski et al., Catal. Today, 107, 481 (2005).
https://doi.org/10.1016/j.cattod.2005.07.058
 
10. M.Bazmi, S.H.Hashemabadi, M.Bayat, Korean J. Chem. Eng., 28, 1340 (2011).
https://doi.org/10.1007/s11814-010-0525-8
 
11. K.Tao, Y.Zhanga, S.Terao et al., Catal. Today, 153, 150 (2010).
https://doi.org/10.1016/j.cattod.2010.02.061
 
12. K.J.Puolakka, S.Juutilainen, A.O.I.Krause, Catal. Today, 115, 217 (2006).
https://doi.org/10.1016/j.cattod.2006.02.034
 
13. F.Pompeo, N.N.Nichio, M.M.V.M.Souza et al, Appl. Catal. A: General, 316, 175 (2007).
https://doi.org/10.1016/j.apcata.2006.09.007
 
14. M.M.V.M.Souza, Martin Schmal, Appl. Catal. A: General, 255, 83 (2003).
https://doi.org/10.1016/S0926-860X(03)00646-X
 
15. Y.Takahashi, T.Yamazaki, Fuel, 102, 239 (2012).
https://doi.org/10.1016/j.fuel.2012.05.062
 
16. A.Cherif, R.Nebbali, Int. J. Hydrogen Energy, 44, 22455 (2019).
https://doi.org/10.1016/j.ijhydene.2018.12.203
 
17. O.N.Bliznjyk, V.V.Prezhdo, Polish J. Appl. Chem., 47, 65 (2003).
 
18. M.V.Manna, P.Sabia, R.Ragucci et al., Fuel, 264, 116768 (2020).
https://doi.org/10.1016/j.fuel.2019.116768
 
19. N.Yu.Masalitina, Ph.D.Thesis, National Technical Kharkiv Polytechnical Institute, Ukraine, Kharkiv (2017).
 
20. Y.Luo, Y.Shi, S.Liao et al., J. Power Sourc., 423, 125 (2019).
https://doi.org/10.1016/j.jpowsour.2019.03.064
 
21. H.Ma, W.F.Schneider, J. Catal., 383, 322 (2020).
https://doi.org/10.1016/j.jcat.2020.01.029
 
22. A.S.Noskov, I.A.Zolotarskii, S.A.Pokrovskaya et al., Chem. Engin. J., 91, 235 (2003).
https://doi.org/10.1016/S1385-8947(02)00159-6
 
23. A.S.Ivanova, E.M.Slavinskaya, V.V.Mokrinskii et al., J. Catal., 221, 213 (2004).
https://doi.org/10.1016/j.jcat.2003.06.001
 
24. Sh.Hui, Q.Yao, D.Wang et al., Energy Procedia, 158, 1497 (2019).
https://doi.org/10.1016/j.egypro.2019.01.357
 
25. D.Wang, Q.Yao, Ch.Mou et al., Fuel, 254, 115719 (2019).
https://doi.org/10.1016/j.fuel.2019.115719
 
26. M.Baerns, R.Imbihl, V.A.Kondratenko et al., J. Catal., 232, 226 (2005).
https://doi.org/10.1016/j.jcat.2005.03.002
 
27. J.Perez-Ramirez, E.V.Kondratenko, V.A.Kondratenko et al., J. Catal., 227, 90 (2004).
https://doi.org/10.1016/j.jcat.2004.06.023
 
28. J.Perez-Ramirez, E.V.Kondratenko, V.A.Kondratenko et al., J. Catal., 229, 303 (2005).
https://doi.org/10.1016/j.jcat.2004.09.020
 
29. A.Lewera, L.Timperman, A.Roguska et al., J. Phys. Chem. C, 115, 20153 (2011).
https://doi.org/10.1021/jp2068446
 
30. K.Kunimori, Y.Ikeda, M.Soma et al., J. Catal., 79, 185 (1983).
https://doi.org/10.1016/0021-9517(83)90301-9
 
31. A.K.Datye, D.S.Kalakkad, M.H.Yao et al., J. Catal., 155, 148 (1995).
https://doi.org/10.1006/jcat.1995.1196
 
32. M.Sun, J.Liu, C.Song et al., ACS Appl. Mater. Interfaces, 11, 23102 (2019).
https://doi.org/10.1021/acsami.9b02128
 
33. E.Fratini, A.Girella, I.Saldan et al., Mater. Lett., 161, 263 (2015).
https://doi.org/10.1016/j.matlet.2015.08.117
 
34. I.Saldan, A.Girella, C.Milanese et al., Functional Materials, 25, 82 (2018).
https://doi.org/10.15407/fm25.01.082
 
35. Y.Xue, F.Scaglione, P.Rizzi et al., Appl. Surf. Sci., 476, 412 (2019).
https://doi.org/10.1016/j.apsusc.2019.01.099
 
36. A.G.Munoz, H.J.Lewerenz, J. Electrochem. Soc., 156, D242 (2009).
https://doi.org/10.1149/1.3133185
 
37. A.Pavlisic, R.Ceglar, A.Pohar et al., Powder Technology, 328, 130 (2018).
https://doi.org/10.1016/j.powtec.2018.01.029
 
38. A.K.Giri, S.K.Majumder, Chem. Engin.. Res.Design, 92, 34 (2014).
https://doi.org/10.1016/j.cherd.2013.07.004
 
39. Z.Guo, Z.Sun, N.Zhang et al., Chem. Engineer. Sci., 209, 115200 (2019).
https://doi.org/10.1016/j.ces.2019.115200
 
40. Ch.J.Dittrich, Chem. Engineer. J., 381, 122492 (2020).
https://doi.org/10.1016/j.cej.2019.122492
 
41. R.Wu, Y.Fan, T.Hong et al., Appl. Thermal Engineer., 162, 114259 (2019).
https://doi.org/10.1016/j.applthermaleng.2019.114259
 
42. G.Su, Yu.Pan, Ya.Zhang et al., Energy, 113, 723 (2016).
https://doi.org/10.1016/j.energy.2016.07.077
 
43. Z.Xiang, Ya.Lu, X.Gong et al., J. Hazard. Mater., 173, 243 (2010).
https://doi.org/10.1016/j.jhazmat.2009.08.075
 
44. I.Iliuta, F.Larachi, Int. J. of Greenhouse Gas Control, 79, 1 (2018).
https://doi.org/10.1016/j.ijggc.2018.09.016
 
45. A.C.N.Preller, North-West University: Potchefstroom, 138 (2011).
 
46. S.Sahin, F.Sefidvash, Energy Convers. Manag., 49, 1902 (2008).
https://doi.org/10.1016/j.enconman.2007.12.017
 
47. I.Barna, Ya.Gumnytskyi, V.Atamanyuk, Chem. Chem. Technol., 7, 461 (2013).
https://doi.org/10.23939/chcht07.04.461
 
48. R.Hosovskyi, D.Kindzera, V.Atamanyuk, Chem. Chem. Technol., 10, 460 (2016).
 
49. V.Atamaniuk, I.Huzova, Z.Hnativ, Chem. Chem. Technol., 12, 263 (2018).
https://doi.org/10.23939/chcht12.02.263
 
50. T.Zeiser, M.Steven, H.Freun et al., Phil. Trans. R. Soc. Lond. A, 360, 507 (2002).
https://doi.org/10.1098/rsta.2001.0945
 
51. L.Davidson, Chalmers University of Technology: Goteborg, Sweden, 50 (2016).
 
52. O.Kuntyi, O.Dobrovetska, S.Korniy et al., Functional Materials, 27, 277 (2020).
 
53. A.Koekemoer, A.Luckos, Fuel, 158, 232 (2015).
https://doi.org/10.1016/j.fuel.2015.05.036
 
54. D.Janecki, A.Burghardt, Gr.Bartelmus, Chem. Engin. J., 237, 176 (2014).
https://doi.org/10.1016/j.cej.2013.09.102
 
55. V.Atamanyuk, Ya.Gumnytskyi, Monograph, Lviv Polytechnic Publishing House, Lviv (2013).
 
56. R.Havryliv, V.Maystruk, Chem. Chem. Technol., 11, 71 (2017).
https://doi.org/10.23939/chcht11.01.071
 

Current number: