Funct. Mater. 2021; 28 1: 22-25.

doi:https://doi.org/10.15407/fm28.01.22

Investigation on hydrothermal synthesis of spinel ferrite CuFe2O4: morphology, crystallinity, chemical and magnetic properties

Perdinan Sinuhaji, Awan Maghfirah, Marhaposan Situmorang, Johaidin Saragih, Muhammadin Hamid, Wina Miranti, Nurul Yaumilda Hasibuan, Martha Rianna

Department of Physics, Universitas Sumatera Utara, 20155 Medan, Indonesia

Abstract: 

In this study, a nanometer-size material CuFe2O4 was synthesized by a low-temperature hydrothermal reaction of CuCl2·2H2O, FeCl2·4H2O and urea (CH4N2O) with various weight ratio between CuCl2 and FeCl2 namely 1:1, 1:2, 2:1 and 2:3, at 200°C for 6 h. The obtained powder was annealed at 300°C for 1 h. Various characterization methods, namely, Field-Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Vibrating Sample Magnetometer (VSM) analysis were used to investigate the properties of the CuFe2O4 nanomaterials. FESEM images revealed that the hydrothermal synthesis of CuFe2O4 resulted in a nanocubic structure with particle size of 45 nm; meanwhile XRD analysis indicated the crystalline nature of CuFe2O4 without any other impurities. In addition, FTIR and VSM allowed explaining the chemical and magnetic properties of nanocubic CuFe2O4.

Keywords: 
hydrothermal synthesis, nanocubic, magnetic properties.
References: 
1. M.Sugimoto, J. Am. Ceram. Soc., 82, 269 (1999).
https://doi.org/10.1111/j.1551-2916.1999.tb20058.x
 
2. S.Kameoka, T.Tanabe, A.P.Tsai, Appl. Catalysis A: General, 375, 163 (2010).
https://doi.org/10.1016/j.apcata.2009.12.035
 
3. A.Chapelle, I.El Younsi, S.Vitale et al., Sens. Actuat. B: Chem., 204, 407 (2014).
https://doi.org/10.1016/j.snb.2014.07.088
 
4. X.Yang, S.Zhang, Q.Yu et al., Sens. Actuat. B: Chem., 270, 538 (2018).
 
5. V.Manikandan, M.Singh, B.C.Yadav et al., J. Sci.: Adv. Mater. Devices, 3, 145 (2018).
https://doi.org/10.1016/j.jsamd.2018.03.008
 
6. M.Ismail, N.S.Mustafa, N.A.Ali et al., Int. J. Hydrogen Energy, 44, 318 (2019).
https://doi.org/10.1016/j.ijhydene.2018.04.191
 
7. K.Elayakumar, A.Manikandan, A. Dinesh et al., J. Magn. Magn. Mater., 478, 140 (2019).
https://doi.org/10.1016/j.jmmm.2019.01.108
 
8. R.K.Selvan, C.O.Augustin, L.J.Berchmans, R.Saraswathi, Mater. Res. Bull., 38, 41 (2003).
https://doi.org/10.1016/S0025-5408(02)01004-8
 
9. H.Hou, G.Xu, S.Tan, S.Xiang, J. Alloys Compd., 735, 2205 (2018).
https://doi.org/10.1016/j.jallcom.2017.11.370
 

Current number: