Funct. Mater. 2021; 28 1: 26-34.


Effect of aging on thermoelectric properties of the Bi2Te3 polycrystals and thin films

E.I.Rogacheva, K.V.Novak, A.N.Doroshenko, A.Yu.Sipatov, T.I.Khramova, S.A.Saenko

National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine


The temperature dependences (77-300 K) of the thermoelectric (TE) properties (the Seebeck coefficient S, electrical conductivity σ, Hall coefficient RH, Hall charge mobility μH>, and TE power factor P) were studied for freshly prepared and for exposed to air at room temperature during 5 years p-Bi2Te3 (60.0 at.% Te) and n-Bi2Te3 (62.8 at.% Te) polycrystals and thin films grown from them by thermal evaporation in vacuum. It was found that after aging, in the p- and n-Bi2Te3 bulk crystals and in the n-type film obtained from the n-Bi2Te3 crystal, type of conductivity is reserved but the p-type film obtained from the p-Bi2Te3 crystal, change the type of conductivity from hole to electronic. The activation energies of possible defect states were determined using the RH(T) dependences. After aging, at the temperatures close to room temperature, the p values of n-Bi2Te3 and p-Bi2Te3 polycrystals decreases by ~ 20 %, but p values of the n-type film grown from n-Bi2Te3 crystal increases by 20-30 %. In the p-type film obtained from p-Bi2Te3 polycrystal, and having changed the type of conductivity after aging, the p values exceed the p values of a film obtained from n-Bi2Te3 polycrystal by ~ 35 % at 250 K and by 25 % at 300 K, remaining at these temperatures below the p values for n-Bi2Te3 polycrystal after aging by ~ 15 %.

bismuth telluride, polycrystal, film, aging, Seebeck coefficient, electrical conductivity, Hall coefficient, Hall mobility, thermoelectric power factor, temperature dependences, activation energy.
1. Thermoelectrics Handbook: Macro to Nano, ed. by D.M.Rowe, CRC Press, Taylor & Francis Group, Boca Raton (2005).
2. Materials Aspect of Thermoelectricity, ed. by C.Uher, CRC Press, Boca Raton (2016).
3. B.M.Goltsman, V.A.Kudinov, I.A.Smirnov, Semiconducting Thermoelectric Materials Based on Bi2Te3, Nauka, Moscow (1972) [in Russian].
4. H.J.Goldsmid, Introduction to Thermoelectricity, Springer Berlin Heidelberg, Berlin (2016).
5. M.S.Dresselhaus, G.Chen, M.Y.Tang et al., Adv. Mater., 19, 1043 (2007). DOI: 10.1002/adma.200600527
6. R.Venkatasubramanian, E.Siivola, T.Colpitts, B.O.Quinn, Nature, 413, 597 (2001).
7. L.Fu, C.L.Kane, Phys. Rev. B, 76, 045302 (2007).
8. M.Z.Hasan, C.L.Kane, Rev. Mod. Phys., 82, 3045 (2010).
9. L.Muchler, F.Casper, B.Yan et al., Phys. Status Solidi RRL, 7, 91 (2013). DOI:
10. D.Culcer, Physica E. 44, 860 (2012). DOI:
11. E.I. Rogacheva, A.V.Budnik, O.S.Vodorez et al., J. Thermoelectricity, 6, 42 (2014).
12. A.V.Budnik, E.I.Rogacheva, V.I.Pinegin et al., J. Electron. Mater., 42, 1324 (2013).
13. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Appl. Phys. Lett., 106, 053103 (2015). DOI:
14. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Thin Solid Films, 594, 109 (2015). DOI:
15. E.I.Rogacheva, K.V.Novak, A.N.Doroshenko et al., J. Nano-Electron. Phys., 5, 04001 (2019).
16. E.I.Rogacheva, K.V.Novak, A.N.Doroshenko et al., Functional Materials, 27, 67 (2020).
17. H.Bando, K.Koizumi, Y.Oikawa et al., J. Phys.:Condens. Matter., 12, 5607 (2000).
18. E.I.Rogacheva, O.N.Nashchekina, A.V.Budnik et al., Thin Solid Films, 612, 128 (2016).
19. C.H.Champness, A.L.Kipling, Can. J. Phys., 44, 769 (1966).
20. C.H.Champness, A.L.Kipling, J. Phys. Chem. Solids, 27, 1409 (1966).
21. V.A.Kulbachinski, X.Osaku, I.Miahara, K.Funagay, Zh. Eksper. Teor. Fiziki, 124, 1358 (2003).

Current number: