Funct. Mater. 2021; 28 1: 42-48.

doi:https://doi.org/10.15407/fm28.01.42

Nanostructured CuFe2O4 and CuFe2O4/reduced graphene oxide composites: structural and magnetic studies

V.O.Kotsyubynsky1, R.I.Zapukhlyak1, V.M.Boychuk1, M.A.Hodlevska1, I.P.Yaremiy1, Kh.V.Bandura2, A.I.Kachmar1, S.V.Fedorchenko1, M.A.Hodlevskyi1

1V. Stefanyk Precarpathian National University, 57 Shevchenko St., 76018 Ivano-Frankivsk, Ukraine
2Ivano-Frankivsk National Medical University, 2 Halytska St., 76018 Ivano-Frankivsk, Ukraine

Abstract: 

In this work the effect of annealing in the range of 200-500°C on the phase composition, morphological properties and magnetic microstructure of hydrothermally synthesized CuFe2O4 and CuFe2O4/reduced graphene oxide has been investigated using XRD, SEM, Mossbauer spectroscopy and low temperature nitrogen adsorption methods. The influence of the presence of reduced graphene oxide particles on the parameters of hyperfine interaction for the composite material has been observed. The evolution of pore size distribution for the synthesized samples with increasing of annealing temperature has been traced.

Keywords: 
reduced graphene oxide, copper ferrite, Mossbauer spectroscopy, pore size distribution.
References: 
1. M.Estrella, L.Barrio, G.Zhou et al., J. Phys. Chem. C, 113, 14411 (2009).
https://doi.org/10.1021/jp903818q
 
2. R.Wu, J.Qu, H.He, Y.Yu, Appl. Catal. B, 48, 492004 (2004).
 
3. S.Kanagesan, M.Hashim, S.AB Aziz et al., Appl. Sci., 6, 184 (2016).
https://doi.org/10.3390/app6090184
 
4. M.A.Haija, A.F.Abu-Hani, N.Hamdan et al., J. Alloys Compd., 690, 4619 (2017).
https://doi.org/10.1016/j.jallcom.2016.08.174
 
5. J.Gao, S.Wu, Y.Han et al., J. Colloid Interface Sci, 524, 409 (2018).
https://doi.org/10.1016/j.jcis.2018.03.112
 
6. H.Yang, J.Yan, Z.Lu et al., J. Alloys Compd., 476, 715 (2009).
https://doi.org/10.1016/j.jallcom.2008.09.104
 
7. Z.Xing, Z.Ju, J.Yang et al., Electrochim. Acta, 102, 51 (2013).
https://doi.org/10.1016/j.electacta.2013.03.174
 
8. P.Chen, X.Xing, H.Xie et al., Chem. Phys. Lett., 660, 176 (2016).
https://doi.org/10.1016/j.cplett.2016.08.020
 
9. Y.Zhao, G.He, W.Dai, H.Chen, Ind. Eng. Chem. Res., 53, 12566 (2014).
https://doi.org/10.1021/ie501624u
 
10. L.S.K.Achary, A.Kumar, B.Barik et al., Sens. Actuators B, 272, 100 (2018).
https://doi.org/10.1016/j.snb.2018.05.093
 
11. R.Khan, M.Habib, M.A.Gondal et al., Mater. Res. Express, 4, 105501 (2017).
https://doi.org/10.1088/2053-1591/aa8dc4
 
12. L.Kaykan, A.K.Sijo, A.Zywczak et al., Appl. Nanosci. (in print) (2020).
 
13. V.M.Boychuk, V.O.Kotsyubynsky, K.V.Bandura et al., J. Nanosci. Nanotechnol., 19, 7320 (2019).
https://doi.org/10.1166/jnn.2019.16712
 
14. E.Prince, R.G.Treuting, Acta Crystallogr., 9, 1025 (1956).
https://doi.org/10.1107/S0365110X56002977
 
15. J.Landers, G.Y.Gor, A.V.Neimark, Colloids Surf., A, 437, 3 (2013).
https://doi.org/10.1016/j.colsurfa.2013.01.007
 
16. I.Nedkov, R.E.Vandenberghe, T.Marinova et al., Appl. Surf. Sci., 253, 2589 (2006).
https://doi.org/10.1016/j.apsusc.2006.05.049
 
17. B.J.Evans, S.S.Hafner, J. Phys. Chem. Solids, 29, 1573 (1968).
https://doi.org/10.1016/0022-3697(68)90100-5
 
18. J.P.Olivier, W.Conklin, M.V.Szombathely, Stud. Surf. Sci. Catal., 87, 81 (1994).
https://doi.org/10.1016/S0167-2991(08)63067-0
 
19. V.Kotsyubynsky, V.Moklyak, A.Hrubiak, Mater. Sci.-Pol., 32, 481 (2014).
https://doi.org/10.2478/s13536-014-0202-4
 
20. G.F.Goya, H.R.Rechenberg, Nanostruct. Mater., 10, 1001 (1998).
https://doi.org/10.1016/S0965-9773(98)00133-0
 
21. I.Nedkov, R.E.Vanderberghe, G.Vissokov et al., Phys. Status Solid, A, 201, 1001 (2004).
https://doi.org/10.1002/pssa.200306788
 
22. R.K.Selvan, C.O. Augustin, V.Sepelak et al., Mater. Chem. Phys., 112, 373 (2008).
https://doi.org/10.1016/j.matchemphys.2008.05.094
 
23. S.Da Dalt, A.S.Takimi, T.M.Volkmer et al., Powder Technol., 210, 103 (2011).
https://doi.org/10.1016/j.powtec.2011.03.001
 
24. J.Z.Jiang, G.F.Goya, H.R.Rechenberg, J. Phys.: Condens. Matter, 11, 4063 (1999).
https://doi.org/10.1088/0953-8984/11/20/313

Current number: