Funct. Mater. 2021; 28 1: 42-48.
Nanostructured CuFe2O4 and CuFe2O4/reduced graphene oxide composites: structural and magnetic studies
1V. Stefanyk Precarpathian National University, 57 Shevchenko St., 76018 Ivano-Frankivsk, Ukraine
2Ivano-Frankivsk National Medical University, 2 Halytska St., 76018 Ivano-Frankivsk, Ukraine
In this work the effect of annealing in the range of 200-500°C on the phase composition, morphological properties and magnetic microstructure of hydrothermally synthesized CuFe2O4 and CuFe2O4/reduced graphene oxide has been investigated using XRD, SEM, Mossbauer spectroscopy and low temperature nitrogen adsorption methods. The influence of the presence of reduced graphene oxide particles on the parameters of hyperfine interaction for the composite material has been observed. The evolution of pore size distribution for the synthesized samples with increasing of annealing temperature has been traced.
1. M.Estrella, L.Barrio, G.Zhou et al., J. Phys. Chem. C, 113, 14411 (2009). https://doi.org/10.1021/jp903818q |
||||
2. R.Wu, J.Qu, H.He, Y.Yu, Appl. Catal. B, 48, 492004 (2004). | ||||
3. S.Kanagesan, M.Hashim, S.AB Aziz et al., Appl. Sci., 6, 184 (2016). https://doi.org/10.3390/app6090184 |
||||
4. M.A.Haija, A.F.Abu-Hani, N.Hamdan et al., J. Alloys Compd., 690, 4619 (2017). https://doi.org/10.1016/j.jallcom.2016.08.174 |
||||
5. J.Gao, S.Wu, Y.Han et al., J. Colloid Interface Sci, 524, 409 (2018). https://doi.org/10.1016/j.jcis.2018.03.112 |
||||
6. H.Yang, J.Yan, Z.Lu et al., J. Alloys Compd., 476, 715 (2009). https://doi.org/10.1016/j.jallcom.2008.09.104 |
||||
7. Z.Xing, Z.Ju, J.Yang et al., Electrochim. Acta, 102, 51 (2013). https://doi.org/10.1016/j.electacta.2013.03.174 |
||||
8. P.Chen, X.Xing, H.Xie et al., Chem. Phys. Lett., 660, 176 (2016). https://doi.org/10.1016/j.cplett.2016.08.020 |
||||
9. Y.Zhao, G.He, W.Dai, H.Chen, Ind. Eng. Chem. Res., 53, 12566 (2014). https://doi.org/10.1021/ie501624u |
||||
10. L.S.K.Achary, A.Kumar, B.Barik et al., Sens. Actuators B, 272, 100 (2018). https://doi.org/10.1016/j.snb.2018.05.093 |
||||
11. R.Khan, M.Habib, M.A.Gondal et al., Mater. Res. Express, 4, 105501 (2017). https://doi.org/10.1088/2053-1591/aa8dc4 |
||||
12. L.Kaykan, A.K.Sijo, A.Zywczak et al., Appl. Nanosci. (in print) (2020). | ||||
13. V.M.Boychuk, V.O.Kotsyubynsky, K.V.Bandura et al., J. Nanosci. Nanotechnol., 19, 7320 (2019). https://doi.org/10.1166/jnn.2019.16712 |
||||
14. E.Prince, R.G.Treuting, Acta Crystallogr., 9, 1025 (1956). https://doi.org/10.1107/S0365110X56002977 |
||||
15. J.Landers, G.Y.Gor, A.V.Neimark, Colloids Surf., A, 437, 3 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.007 |
||||
16. I.Nedkov, R.E.Vandenberghe, T.Marinova et al., Appl. Surf. Sci., 253, 2589 (2006). https://doi.org/10.1016/j.apsusc.2006.05.049 |
||||
17. B.J.Evans, S.S.Hafner, J. Phys. Chem. Solids, 29, 1573 (1968). https://doi.org/10.1016/0022-3697(68)90100-5 |
||||
18. J.P.Olivier, W.Conklin, M.V.Szombathely, Stud. Surf. Sci. Catal., 87, 81 (1994). https://doi.org/10.1016/S0167-2991(08)63067-0 |
||||
19. V.Kotsyubynsky, V.Moklyak, A.Hrubiak, Mater. Sci.-Pol., 32, 481 (2014). https://doi.org/10.2478/s13536-014-0202-4 |
||||
20. G.F.Goya, H.R.Rechenberg, Nanostruct. Mater., 10, 1001 (1998). https://doi.org/10.1016/S0965-9773(98)00133-0 |
||||
21. I.Nedkov, R.E.Vanderberghe, G.Vissokov et al., Phys. Status Solid, A, 201, 1001 (2004). https://doi.org/10.1002/pssa.200306788 |
||||
22. R.K.Selvan, C.O. Augustin, V.Sepelak et al., Mater. Chem. Phys., 112, 373 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.094 |
||||
23. S.Da Dalt, A.S.Takimi, T.M.Volkmer et al., Powder Technol., 210, 103 (2011). https://doi.org/10.1016/j.powtec.2011.03.001 |
||||
24. J.Z.Jiang, G.F.Goya, H.R.Rechenberg, J. Phys.: Condens. Matter, 11, 4063 (1999). https://doi.org/10.1088/0953-8984/11/20/313 |