Funct. Mater. 2021; 28 1: 64-68.

doi:https://doi.org/10.15407/fm28.01.64

High-temperature wetting and interfacial interaction in AlB12-Al system

O.Umanskyi, M.Storozhenko, V.Sheludko, V.Muratov, V.Krasovskyy, V.Konoval, O.Vasiliev, O.Terentiev

I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03142 Kyiv, Ukraine

Abstract: 

The article is dedicated to the study of wetting and specifics of interaction between phases on the drop-substrate interface in the AlB12-Al system. Contact angles between an aluminum melt and an aluminum dodecaboride ceramic substrate were studied using the sessile drop method. It was found that upon aluminum melting at 660°C, contact angles are Θ >> 90 deg. Intensive spreading of the aluminum melt starts at 1200°C with contact angles Θ ≈ 15 deg. The X-ray spectral microanalysis showed that AlB12 grains recrystallized through the aluminum melt on the interface. In addition, due to the absence of active chemical interaction, the AlB12-Al system can be recommended for the development of new composite materials.

Keywords: 
wetting, aluminum dodecaboride, aluminum melt, interphase interaction.
References: 
1. M.Sabah Ali, Azmach Hanim Mohamed, et al., Reference Module in Materials Science and Materials Engineering, Elsevier, Oxford (2018).
 
2. J.Song, C.Huan, B.Zou et al., Intern. J. Refractory Metals Hard Mater., 30, 91 (2012).
https://doi.org/10.1016/j.ijrmhm.2011.07.008
 
3. M.S.Storozhenko, A.P.Umanskii, V.A.Lavrenko et al., Powder Metall. Met. Ceram., 50, 719 (2012).
https://doi.org/10.1007/s11106-012-9381-x
 
4. A.Panasyuk, O.Umanskyi, M.Storozhenko et al., Key Eng. Mater., 527, 9 (2013).
https://doi.org/10.4028/www.scientific.net/KEM.527.9
 
5. K.Cymerman, D.Oleszak, M.Rosinski et al., Adv. Powder Technol., 29, 1795 (2018).
https://doi.org/10.1016/j.apt.2018.04.015
 
6. P.S.Kisly, V.A.Neronov, T.A.Prikhna et al., Aluminum Borides, Naukova Dumka, Kiev (1990).
 
7. S.Okada, T.Atoda, J. Ceram. Soc. Jap., 88, 547 (1980).
https://doi.org/10.2109/jcersj1950.88.1021_547
 
8. T.A.Prikhna, P.P.Barvitskyi, M.V.Karpets et al., J. Superhard Mater., 39, 299 (2017).
https://doi.org/10.3103/S106345761705001X
 
9. T.A.Prikhna, P.P.Barvitskyi, A.V.Maznaya et al., Ceram. Intern., 45, 9580 (2019).
https://doi.org/10.1016/j.ceramint.2018.10.065
 
10. L.Xi, I.Kaban, R.Nowak et al., J. Mat. Sci., 50, 2682 (2015).
https://doi.org/10.1007/s10853-015-8814-6
 
11. A.I.Kharlamov, S.V.Loichenko, V.I.Nizhenko et al., Powder Metall. Met. Ceram., 40, 65 (2001).
https://doi.org/10.1023/A:1011364023572
 
12. O.O.Vasiliev, V.B.Muratov, T.I.Duda, Fizika i Khimiya Tverd. Tila, 18, 358 (2017).
https://doi.org/10.15330/pcss.18.3.358-364

Current number: