Funct. Mater. 2021; 28 1: 90-96.

doi:https://doi.org/10.15407/fm28.01.90

Interactions of fenspiride- and azithromycin-loaded liposomes with model lipid membranes: calorimetric studies in kinetic regime

O.V.Vashchenko, N.A.Kasian, L.V.Budianska, L.N.Lisetski

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

Differential scanning calorimetry (DSC) technique was applied to study interactions of drug-loaded liposomes with model lipid membrane. Two types of drugs were studied, namely, water-soluble one (anti-inflammatory drug fenspiride, FS) and lipid-soluble one (antibiotic azithromycin, AZ) with different mechanisms of drug-membrane interactions. Drug transfer from the liposomes based on L-α-dipalmitoylphosphatidylcholine to L-α-dimirystoylphosphatidylcholine membranes was monitored by analyzing DSC profiles of the systems obtained in consecutive scans. It was shown that FS-loaded liposomes have weaker membranotropic effect as compared to FS water solution of equal FS concentrations. For both FS and AZ, relatively fast drug transfer from liposomes into model membrane was accompanied by slower lipid exchange between these structures. Similar transfer rates were shown for both drugs despite the fact that AZ transfer is mainly membrane-mediated, whereas FS transfer is primarily water-mediated.

Keywords: 
fenspiride, azithromycin, liposomes, model lipid membranes, drug-membrane interactions, differential scanning calorimetry.
References: 
1. T.Mavromoustakos, in: Methods in Membrane Lipids, ed. A.M.Dopico, Humana Press, Totowa (2007).
 
2. A.Blume, in: Physical Properties of Biological Membranes and Their Functional Implications, ed. C.Hidalgo, Springer, Boston (1988).
 
3. R.McElhaney, Chem. Phys. Lipids, 30, 229 (1982).
https://doi.org/10.1016/0009-3084(82)90053-6
 
4. R.N.A.H.Lewis, D.A.Mannock, R.N.McElhaney, Meth. Mol. Biol., 400, 171 (2007).
https://doi.org/10.1007/978-1-59745-519-0_12
 
5. M.H.Chiu, E.J.Prenner, J. Pharm. Bioallied. Sci., 3, 39 (2011).
https://doi.org/10.4103/0975-7406.76463
 
6. A.Raundino, M.G.Sarpietro. M.Pannuzzo, J. Pharm. Bioallied. Sci., 3, 15 (2011).
https://doi.org/10.4103/0975-7406.76462
 
7. R.Pignatello, T.Musumeci, L.Basile et al., J. Pharm. Bioall. Sci., 3, 4 (2011).
https://doi.org/10.4103/0975-7406.76461
 
8. M.Lucio, J.L.F.C.Lima, S.Reis, Curr. Med. Chem., 17, 1795 (2010).
https://doi.org/10.2174/092986710791111233
 
9. M.G.Sarpietro, F.Castelli, in: Drug-Biomembrane Interaction Studies. The Application of Calorimetric Techniques, ed. R.Pignatello, Woodhead Publishing (2013), p.335.
https://doi.org/10.1533/9781908818348.335
 
10. J.K.Seydel, M.Wiese. Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling, Wiley-VCH, Weinheim (2002).
https://doi.org/10.1002/3527600639
 
11. C.Peetla, A.Stine, V.Labhasetwar, Mol. Pharm., 6, 1264 (2009).
https://doi.org/10.1021/mp9000662
 
12. D.Lopes, S.Jakobtorweihen, C.Nunes et al., Prog. Lipid Res., 65, 24 (2017).
https://doi.org/10.1016/j.plipres.2016.12.001
 
13. M.Bakonyi, S.Berko, M.Budai-Szucs et al., J. Therm. Anal. Calorim., 130, 1619 (2017).
https://doi.org/10.1007/s10973-017-6394-1
 
14. J.Drazenovic, H.Wang, K.Roth et al., Biochim. Biophys. Acta., 1848, 532 (2015).
https://doi.org/10.1016/j.bbamem.2014.10.003
 
15. M.G.Sarpietro, F.Castelli, J. Pharm. Bioall. Sci., 3, 77 (2011).
https://doi.org/10.4103/0975-7406.76472
 
16. N.A.Kasian, O.V.Vashchenko, L.V.Budianska et al., Biochim. Biophys. Acta., 1861, 123 (2019).
https://doi.org/10.1016/j.bbamem.2018.08.007
 
17. F.Castelli, V.Librando, M.G.Sarpietro, Environ. Sci. Technol., 36, 2717 (2002).
https://doi.org/10.1021/es010260w
 
18. F.Castelli, S.Caruso, N.Uccella, J. Agric. Food Chem., 51, 851 (2003).
https://doi.org/10.1021/jf020582z
 
19. F.Castelli, D.Micieli, S.Ottimo et al., Chemosphere, 73, 1108 (2008).
https://doi.org/10.1016/j.chemosphere.2008.07.023
 
20. S.Aleandri, C.Bombelli, M.G.Bonicelli et al., Biochim. Biophys. Acta., 1828, 382 (2013).
https://doi.org/10.1016/j.bbamem.2012.10.001
 
21. L.Montenegro, F.Castelli, M.G.Sarpietro, Pharmaceuticals, 11, 138 (2018).
https://doi.org/10.3390/ph11040138
 
22. A.O.Krasnikova, O.V.Vashchenko, N.A.Kasian et al., Biophys. Bull., 32, 27 (2014).
 
23. O.V.Vashchenko, L.V.Budianska, Biophys. Bull., 36, 11 (2016).
 
24. A.O.Sadchenko, O.V.Vashchenko, A.Yu.Pugovkin et al., Biophysics, 62, 570 (2017).
https://doi.org/10.1134/S0006350917040194
 
25. A.Akbarzadeh, R.Rezaei-Sadabady, S.Davaran et al., Nanoscale Res. Lett., 8, 102 (2013).
https://doi.org/10.1186/1556-276X-8-102

Current number: