Funct. Mater. 2021; 28 1: 97-105.

doi:https://doi.org/10.15407/fm28.01.97

Adsorption immobilization of chemotherapeutic drug cisplatin on the surface of sol-gel bioglass 60S

A.P.Kusyak1, A.L.Petranovska1, V.A.Dubok2, V.S.Chornyy3, O.A.Bur'yanov3, N.M.Korniichuk1, P.P.Gorbyk1

1A.Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine 2I.Frantsevich Institute of Problems of Materials Science, National Academy of Sciences of Ukraine, Kyiv, Ukraine 3O.Bogomolets National Medical University, Kyiv, Ukraine

Abstract: 

The features of the dissolution processes of sol-gel bioglass (BG) 60S in model physiological solutions (SBF): 0.9% NaCl (NSS) and Kokubo's was studied in vitro; the features of adsorption immobilization and desorbcion of cisplatin on the surface of bioglass was investigated. Samples of BG 60S (4%P2O5, 36% CaO, 60% SiO2) were obtained by sol-gel synthesis. The processes of glass dissolution, change of ionic composition of NSS and Kokubo's solution were investigated by a complex of physicochemical methods. Active ion exchange processes involving SBF and BG 60S have been recorded. Identification of cisplatin adsorbed on the surface of BG 60S was performed by IR spectroscopy. The adsorption capacity, the degree of extraction of the cisplatin was determined in terms of the concentration of Pt(II) ions in the solutions before and after adsorption. The results of the mathematical processing of the experimental data indicate the possibility of using the Freundlich model to describe the processes of adsorption of cisplatin on the BG 60S surface. These experimental data indicate the slow release of cisplatin and bioactive glass components from the surface of 60S/cisplatin composites in model biological fluids and their prospects for the development of a new prolonged oncosteotherapy drug for topical application.

Keywords: 
sol-gel synthesis, bioglass, cisplatin, adsorption, drug, local therapy.
References: 
1. V.A.Dubok, V.V.Protsenko, A.V.Shinkaruk, O.N.Atamanenko, Ortopediya, Travmatologiya i Protezirovaniye, 3, 91 (2008).
 
2. A.A.Bur'yanov, V.S.Chorniy, N.V.Dedukh et al., Trauma, 6, 56 (2019). DOI:10.22141 / 1608-1706.1.20.2019.158670
 
3. S.V.Gorobets', O.Yu.Gorobets', P.P.Gorbyk, I.V.Uvarova, Funktsionalni Bio- ta Nanomaterialy Medychnogo Pryznachennia, Kondor, Kyiv (2018).
 
4. E.Andronescu, A.Ficai, M.G.Albu et al., Technol. Cancer Res. T, 4, 275 (2013).
https://doi.org/10.7785/tcrt.2012.500331
 
5. L.L.Hench, E.Fielder, Sol-Gel Technologies for Glass Producers and Users, Springer Science, Business Media (2004). https://www.springer.com/gp/book/9781402079382
 
6. C.E.A.Dutra, M.M.Pereira, R.Serakides, C.M.F.Rezende, J. Tissue Eng. Regen Me, 4, 221 (2008). DOI:10.1002/term.86
https://doi.org/10.1002/term.86
 
7. O.A.Buryanov, V.S.Chorniy, V.V.Protsenko et al., Litopys Travmatolohiyi ta Ortopediyi, 1-2, 37 (2018).
 
8. M.B.Coelho, M.M.Pereira, J. Biomed. Mater. Res. B, 75, 451 (2005). DOI:10.1002/jbm.b.30354.
https://doi.org/10.1002/jbm.b.30354
 
9. M.Bohner, J.Lemaitre, Biomaterials, 30, 2175 (2009).
https://doi.org/10.1016/j.biomaterials.2009.01.008
 
DOI:10.1016/j.biomaterials.2009.01.008
https://doi.org/10.1016/j.biomaterials.2009.01.008
 
10. I.Cacciotti, M.Lombardi, A.Bianco et al., J. Mater. Sci. Mater. M, 23, 1849 (2012). DOI:10.1007/s10856-012-4667-6
https://doi.org/10.1007/s10856-012-4667-6
 
11. I.Cacciotti, G.Lehmann, A.Camaioni et al., Key Eng. Mater., 541, 41 (2013). DOI:10.4028/www.scientific.net/kem.541.41
https://doi.org/10.4028/www.scientific.net/KEM.541.41
 
12. J.R.Jones, D.S.Brauer, L.Hupa et al., Int. J. Appl. Glass Sci., 7, 423 (2016). DOI:10.1111/ijag.12252
https://doi.org/10.1111/ijag.12252
 
13. N.C.Lindfors, I.Koski, J.T.Heikkila et al., J. Biomed. Mater. Res. B, 94B, 157 (2010). DOI:10.1002/jbm.b.31636
https://doi.org/10.1002/jbm.b.31636
 
14. N.C.Lindfors, J.T.Heikkila, I.Koski et al., J. Biomed. Mater. Res. B, 90B, 131 (2008). DOI:10.1002/jbm.b.31263
https://doi.org/10.1002/jbm.b.31263
 
15. N.C.Lindfors, J.T.Heikkia, A.J.Aho, J. Biomed. Mater. Res. B, 87B, 73 (2008). DOI:10.1002/jbm.b.31070
https://doi.org/10.1002/jbm.b.31070
 
16. D.Ficai, A.Ficai, A.Melinescu, E.Andronescu, Nanostruct. Cancer Ther., 513 (2017). DOI:10.1016/b978-0-323-46144-3.00020-9
https://doi.org/10.1016/B978-0-323-46144-3.00020-9
 
17. G.L.Alves, R.Serakides, I.R.Rosado et al., Bmc Vet Res, 11, 247 (2015). DOI:10.1186/s12917-015-0558-7
https://doi.org/10.1186/s12917-015-0558-7
 
18. L.L.Hench, J.R.Jones, Front. Bioengin. Biotechnol., 3, 1 (2015). DOI:10.3389/fbioe.2015.00194
https://doi.org/10.3389/fbioe.2015.00194
 
19. M.De Barros Coelho, M.Magalhaes Pereira, J. Biomed. Mater. Res. B, 75B, 451 (2005). DOI:10.1002/jbm.b.30354
https://doi.org/10.1002/jbm.b.30354
 
20. A.L.Petranovska, N.V.Abramov, S.P.Turanska et al., J. Nanostruct. Chem., 5, 275 (2015).
https://doi.org/10.1007/s40097-015-0159-9
 
21. M.V.Abramov, A.P.Kusyak, O.M.Kaminskiy et al., Horiz. World Phys., 293, 1 (2017).
 
22. F.I.Tsyupko, A.V.Sribna, M.M Laruk, I.P.Polyuzhin, Visnyk Natsional'noho Universytetu L'vivs'ka Politekhnika, 488, 46 (2003).
 
23. A.N.Skvortsov, Tsitologiya, 51, 229 (2009).
https://doi.org/10.1080/00396330903011602
 
24. Y.S.Ho, G.A.McKay, Trans. Chem. E, 76, 332 (1998).
https://doi.org/10.1139/b98-007
 
25. A.A.Chuiko, Y.I.Gorlov, V.V.Lobanov, Structure and Chemistry of Silica, Naukova Dumka, Kyiv (2007) [in Russian].
 
26. G.T.Hermanson, Bioconjugate Technigues, Academic Press, London (2008).
 

Current number: