Funct. Mater. 2021; 28 (2): 210-216.

doi:https://doi.org/10.15407/fm28.02.210

Laser-induced nanoparticles in electroanalysis: Review

V.S.Vasylkovskyi1,2, M.I.Slipchenko2, O.V.Slipchenko3, K.M.Muzyka1, Yu.T.Zholudov1

1Kharkiv National University of RadioElectronics, Department of Biomedical Engineering, 14 Nauky Ave., 61166 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC "Institute for Single Crystals","National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

Electroanalytical techniques have a broad application for chemical analysis of various samples because of their advantages such as versatility and high sensitivity. To improve the efficiency of the analytical setup, the electrodes for such measurements can be modified with nanoparticles. Laser synthesis is a promising candidate to fabricate suitable nanoparticles and has numerous advantages. The Review presents a description of laser techniques of synthesis of nanoparticles as well as achievements and prospects of usage of obtained nanoparticles in electroanalytical methods, which is important for its further application.

Keywords: 
laser synthesis, ablation, dewetting nanoparticles, electrode nanostructuration, electrochemical, electrochemiluminescence.
References: 
1. J. Wang, Anal. Electrochem., Wiley-VCH Publishers, N-Y, (2006).
 
2. A.J.Bard, L,R.Faulkner, Electrochemical Methods. Fundamentals and Applications (2001).
 
3. W.Gao, K.Muzyka, X.Ma et al., Chem. Scien., 9, 3911 (2018).
https://doi.org/10.1039/C8SC00410B
 
4. S.Sharma, N.Singh, V.Tomar, R.Chandra, Biosens. Bioelectr., 107, 76 (2018).
https://doi.org/10.1016/j.bios.2018.02.013
 
5. X.Zhang, Q.Guo, D.Cui, Sensors, 9, 1033 (2009).
https://doi.org/10.3390/s90201033
 
6. W.Siangproh, W.Dungchai, P.Rattanarat, O.Chailapakul, Anal. Chim. Acta, 690, 10 (2011).
https://doi.org/10.1016/j.aca.2011.01.054
 
7. M.Sportelli, M.Izzi, A.Volpe et al., Antibiotics, 7, 67 (2018).
https://doi.org/10.3390/antibiotics7030067
 
8. A.P.Caricato, A.Luches, M.Martino, Laser Fabrication of Nanoparticles, Handbook of Nanoparticles (2016).
https://doi.org/10.1007/978-3-319-15338-4_21
 
9. A.Reza Sadrolhosseini, M.Adzir Mahdi, F.Alizadeh, S.Abdul Rashid, Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid, Laser Technology and its Applications (2019).
https://doi.org/10.5772/intechopen.80374
 
10. K. Habiba, V. I. Makarov, B. R. Weiner et al., Manufacturing nanostructures, One Central Press (2014).
 
11. M.Kim, S.Osone, T.Kim et al., KONA Powder Part. J., 34, 80 (2017).
https://doi.org/10.14356/kona.2017009
 
12. H.Naser, M.A.Alghoul, M.K.Hossain et al., J.Nanopart.Res., 21, Nov. (2019).
https://doi.org/10.1007/s11051-019-4690-3
 
13. C.L.Sajti, R.Sattari, B.N.Chichkov, S.Barcikowski, J.Phys.Chem.C, 114, 2421 (2010).
https://doi.org/10.1021/jp906960g
 
14. Y.T.Zholudov, C.L.Sajti, N.N.Slipchenko, B.N.Chichkov, J.Nanopart. Res., 17, 490 (2015).
https://doi.org/10.1007/s11051-015-3303-z
 
15. H.Oh, A.Pyatenko, M.Lee, Appl. Surf. Sci., 475, 740 (2019).
https://doi.org/10.1016/j.apsusc.2019.01.055
 
16. Y.Liu, B.J.J.Austen, T.Cornwell et al., Electrochem. Commun., 77, 24 (2017).
https://doi.org/10.1016/j.elecom.2017.02.009
 
17. A.V.Shabalina, I.N.Lapin, K.A.Belova, V.A.Svetlichnyi, Zh. Elektrohimii. 51, 362 (2015).
https://doi.org/10.1134/S1023193515040114
 
18. X.Xu, G.Duan, Y.Li et al., ACS Appl.Mater. Interfaces, 6, 65 (2013).
https://doi.org/10.1021/am404816e
 
19. V.L.Kumar, R.S.S.Siddhardha, A.Kaniyoor et al., Electroanal., 26, 1850 (2014).
https://doi.org/10.1002/elan.201400244
 
20. A.Hajjaji, S.Jemai, K.Trabelsi et al., J.Mater. Sci.: Mater. Electron., 30, 20935 (2019).
https://doi.org/10.1007/s10854-019-02436-0
 
21. M.Lau, S.Reichenberger, I.Haxhiaj et al., ACS Appl. Energy Mater., 1, 5366 (2018).
https://doi.org/10.1021/acsanm.8b01479
 
22. J.Johny, S.Sepulveda-Guzman, B.Krishnan et al., Chem. Phys. Chem, 18, 1061 (2017).
https://doi.org/10.1002/cphc.201601186
 
23. P.Kalita, J.Singh, M.Kumar Singh et al., Appl.Phys.Lett., 100, 093702 (2012).
https://doi.org/10.1063/1.3690044
 
24. S.Kaneko, T.Ito, Y.Hirabayashi et al., Talanta, 84, 579 (2011).
https://doi.org/10.1016/j.talanta.2010.12.040
 
25. V.P.Hitaishi, I.Mazurenko, A.Vengasseril Murali et al., Frontiers .Chem., 8, 431(2020).
https://doi.org/10.3389/fchem.2020.00431
 
26. K.Grochowska, K.Siuzdak, G.Sliwinski, Eur. J. Inorg.Chem., 2015, 1275 (2014).
https://doi.org/10.1002/ejic.201402485
 
27. A.Scandurra, F.Ruffino, M.Censabella et al., Nanomaterials, 9, 1794 (2019).
https://doi.org/10.3390/nano9121794
 
28. A.Scandurra, F.Ruffino, S Sanzaro, M.G.Grimaldi, Sens. Actuat. B: Chem., 301, 127113 (2019).
https://doi.org/10.1016/j.snb.2019.127113
 
29. A.Sangili, V.Vinothkumar, S.-M.Chen et al., Langmuir, 36, 13949 (2020).
https://doi.org/10.1021/acs.langmuir.0c02448
 
30. E.Owusu-Ansah, C.A.Horwood, H.A.El-Sayed et al., Appl.Phys. Lett., 106, 203103 (2015).
https://doi.org/10.1063/1.4921528
 
31. H.A.El-Sayed, C.A.Horwood, E.Owusu-Ansah et al., Phys. Chem. Chem.Phys., 17, 11062 (2015).
https://doi.org/10.1039/C5CP00924C
 
32. L.Yang, J.Wei, Z.Ma et al., Nanomaterials, 9, 1789 (2019).
https://doi.org/10.3390/nano9121789
 
33. S.V.Makarov, V.A.Milichko, I.S.Mukhin et al., Laser Photon. Rev., 10, 91 (2016).
https://doi.org/10.1002/lpor.201500119
 
34. K.Muzyka, M.Saqib, Z.Liu et al., Biosens. Bioelectron., 92, 241 (2017).
https://doi.org/10.1016/j.bios.2017.01.015
 
35. A.Ravalli, D.Voccia, I.Palchetti, G.Marrazza, Bisensors, 6, 39 (2016).
https://doi.org/10.3390/bios6030039
 
36. J.Shen, T.Zhou, R.Huang, Micromachines, 10, 532 (2019).
https://doi.org/10.3390/mi10080532
 
37. J. Shu, D.Tang, Anal. Chem., 92, 363 (2019).
https://doi.org/10.1021/acs.analchem.9b04199
 
38. S.Sharma, N.Singh, V.Tomar, R.Chandra, Biosens. Bioelectron., 107, 76 (2018).
https://doi.org/10.1016/j.bios.2018.02.013
 
39. M.Rizwan, N.Mohd-Naim, M.Ahmed, Sensors, 18, 166 (2018).
https://doi.org/10.3390/s18010166
 
40. D.Peng, B.Hu, M.Kang et al., Appl. Surface Scien., 390, 422 (2016).
https://doi.org/10.1016/j.apsusc.2016.08.104
 
41. Y.Zholudov, A.S.Aljebur, A.Kukoba, 2019 IEEE 39th Intern. Conf. Electronics and Nanotechnology (ELNANO 2019) - Proc., Kyiv, Ukraine, (2019).
 
42. W.Miao, Chem.Rev., 108, 2506 (2008).
https://doi.org/10.1021/cr068083a
 
43. S.Majeed, W.Gao, Y.Zholudov et al., Electroanalysis, 28, 2672 (2016).
https://doi.org/10.1002/elan.201600209
 
44. K.Muzyka, Y.Zholudov, A.Kukoba et al., IEEE 40th Intern. Conf. Electronics Nanotechnology, (ELNANO 2020) - Proc., Kyiv, Ukraine, 552 (2020).
 
45. M.Hesari, Z.Ding, J. Electrochem. Soc., 163, H3116 (2015).
https://doi.org/10.1149/2.0161604jes
 
46. Y.S.Obeng, A.J.Bard, Langmuir, 7, 195 (1991).
https://doi.org/10.1021/la00049a035
 
47. M.Buda, F.Gao, A.Bard, J. Solid State Electrochem., 8,706 (2004).
https://doi.org/10.1007/s10008-004-0535-8
 
48. Y.Zholudov, D.Snizhko, A.Kukoba et al., Electrochim. Acta, 54, 360 (2008).
https://doi.org/10.1016/j.electacta.2008.07.069
 
49. K.Muzyka, G.Khaled, A.Kukoba et al., IEEE 39th International Conference on Electronics and Nanotechnology, (ELNANO 2019) - Proc., Kyiv, Ukraine, 526 (2019).
 
50. S.Hazelton, X.Zheng, J.Zhao, D.Pierce, Sensors, 8, 5942 (2008).
https://doi.org/10.3390/s8095942
 
51. A.Zanut, F.Palomba, M.Rossi Scota et al., Angewandte Chemie, 132, 22042 (2020).
https://doi.org/10.1002/ange.202009544
 
52. Y.Zholudov, A.Kukoba, L.Sajti, B.Chichkov, IEEE 8th Intern. Conf. Advanc. Optoelectron. Lasers, Sozopol, Bulgaria (CAOL (2019).
 

Current number: