Funct. Mater. 2021; 28 (2): 210-216.
Laser-induced nanoparticles in electroanalysis: Review
1Kharkiv National University of RadioElectronics, Department of Biomedical Engineering, 14 Nauky Ave., 61166 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC "Institute for Single Crystals","National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
Electroanalytical techniques have a broad application for chemical analysis of various samples because of their advantages such as versatility and high sensitivity. To improve the efficiency of the analytical setup, the electrodes for such measurements can be modified with nanoparticles. Laser synthesis is a promising candidate to fabricate suitable nanoparticles and has numerous advantages. The Review presents a description of laser techniques of synthesis of nanoparticles as well as achievements and prospects of usage of obtained nanoparticles in electroanalytical methods, which is important for its further application.
1. J. Wang, Anal. Electrochem., Wiley-VCH Publishers, N-Y, (2006). | ||||
2. A.J.Bard, L,R.Faulkner, Electrochemical Methods. Fundamentals and Applications (2001). | ||||
3. W.Gao, K.Muzyka, X.Ma et al., Chem. Scien., 9, 3911 (2018). https://doi.org/10.1039/C8SC00410B |
||||
4. S.Sharma, N.Singh, V.Tomar, R.Chandra, Biosens. Bioelectr., 107, 76 (2018). https://doi.org/10.1016/j.bios.2018.02.013 |
||||
5. X.Zhang, Q.Guo, D.Cui, Sensors, 9, 1033 (2009). https://doi.org/10.3390/s90201033 |
||||
6. W.Siangproh, W.Dungchai, P.Rattanarat, O.Chailapakul, Anal. Chim. Acta, 690, 10 (2011). https://doi.org/10.1016/j.aca.2011.01.054 |
||||
7. M.Sportelli, M.Izzi, A.Volpe et al., Antibiotics, 7, 67 (2018). https://doi.org/10.3390/antibiotics7030067 |
||||
8. A.P.Caricato, A.Luches, M.Martino, Laser Fabrication of Nanoparticles, Handbook of Nanoparticles (2016). https://doi.org/10.1007/978-3-319-15338-4_21 |
||||
9. A.Reza Sadrolhosseini, M.Adzir Mahdi, F.Alizadeh, S.Abdul Rashid, Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid, Laser Technology and its Applications (2019). https://doi.org/10.5772/intechopen.80374 |
||||
10. K. Habiba, V. I. Makarov, B. R. Weiner et al., Manufacturing nanostructures, One Central Press (2014). | ||||
11. M.Kim, S.Osone, T.Kim et al., KONA Powder Part. J., 34, 80 (2017). https://doi.org/10.14356/kona.2017009 |
||||
12. H.Naser, M.A.Alghoul, M.K.Hossain et al., J.Nanopart.Res., 21, Nov. (2019). https://doi.org/10.1007/s11051-019-4690-3 |
||||
13. C.L.Sajti, R.Sattari, B.N.Chichkov, S.Barcikowski, J.Phys.Chem.C, 114, 2421 (2010). https://doi.org/10.1021/jp906960g |
||||
14. Y.T.Zholudov, C.L.Sajti, N.N.Slipchenko, B.N.Chichkov, J.Nanopart. Res., 17, 490 (2015). https://doi.org/10.1007/s11051-015-3303-z |
||||
15. H.Oh, A.Pyatenko, M.Lee, Appl. Surf. Sci., 475, 740 (2019). https://doi.org/10.1016/j.apsusc.2019.01.055 |
||||
16. Y.Liu, B.J.J.Austen, T.Cornwell et al., Electrochem. Commun., 77, 24 (2017). https://doi.org/10.1016/j.elecom.2017.02.009 |
||||
17. A.V.Shabalina, I.N.Lapin, K.A.Belova, V.A.Svetlichnyi, Zh. Elektrohimii. 51, 362 (2015). https://doi.org/10.1134/S1023193515040114 |
||||
18. X.Xu, G.Duan, Y.Li et al., ACS Appl.Mater. Interfaces, 6, 65 (2013). https://doi.org/10.1021/am404816e |
||||
19. V.L.Kumar, R.S.S.Siddhardha, A.Kaniyoor et al., Electroanal., 26, 1850 (2014). https://doi.org/10.1002/elan.201400244 |
||||
20. A.Hajjaji, S.Jemai, K.Trabelsi et al., J.Mater. Sci.: Mater. Electron., 30, 20935 (2019). https://doi.org/10.1007/s10854-019-02436-0 |
||||
21. M.Lau, S.Reichenberger, I.Haxhiaj et al., ACS Appl. Energy Mater., 1, 5366 (2018). https://doi.org/10.1021/acsanm.8b01479 |
||||
22. J.Johny, S.Sepulveda-Guzman, B.Krishnan et al., Chem. Phys. Chem, 18, 1061 (2017). https://doi.org/10.1002/cphc.201601186 |
||||
23. P.Kalita, J.Singh, M.Kumar Singh et al., Appl.Phys.Lett., 100, 093702 (2012). https://doi.org/10.1063/1.3690044 |
||||
24. S.Kaneko, T.Ito, Y.Hirabayashi et al., Talanta, 84, 579 (2011). https://doi.org/10.1016/j.talanta.2010.12.040 |
||||
25. V.P.Hitaishi, I.Mazurenko, A.Vengasseril Murali et al., Frontiers .Chem., 8, 431(2020). https://doi.org/10.3389/fchem.2020.00431 |
||||
26. K.Grochowska, K.Siuzdak, G.Sliwinski, Eur. J. Inorg.Chem., 2015, 1275 (2014). https://doi.org/10.1002/ejic.201402485 |
||||
27. A.Scandurra, F.Ruffino, M.Censabella et al., Nanomaterials, 9, 1794 (2019). https://doi.org/10.3390/nano9121794 |
||||
28. A.Scandurra, F.Ruffino, S Sanzaro, M.G.Grimaldi, Sens. Actuat. B: Chem., 301, 127113 (2019). https://doi.org/10.1016/j.snb.2019.127113 |
||||
29. A.Sangili, V.Vinothkumar, S.-M.Chen et al., Langmuir, 36, 13949 (2020). https://doi.org/10.1021/acs.langmuir.0c02448 |
||||
30. E.Owusu-Ansah, C.A.Horwood, H.A.El-Sayed et al., Appl.Phys. Lett., 106, 203103 (2015). https://doi.org/10.1063/1.4921528 |
||||
31. H.A.El-Sayed, C.A.Horwood, E.Owusu-Ansah et al., Phys. Chem. Chem.Phys., 17, 11062 (2015). https://doi.org/10.1039/C5CP00924C |
||||
32. L.Yang, J.Wei, Z.Ma et al., Nanomaterials, 9, 1789 (2019). https://doi.org/10.3390/nano9121789 |
||||
33. S.V.Makarov, V.A.Milichko, I.S.Mukhin et al., Laser Photon. Rev., 10, 91 (2016). https://doi.org/10.1002/lpor.201500119 |
||||
34. K.Muzyka, M.Saqib, Z.Liu et al., Biosens. Bioelectron., 92, 241 (2017). https://doi.org/10.1016/j.bios.2017.01.015 |
||||
35. A.Ravalli, D.Voccia, I.Palchetti, G.Marrazza, Bisensors, 6, 39 (2016). https://doi.org/10.3390/bios6030039 |
||||
36. J.Shen, T.Zhou, R.Huang, Micromachines, 10, 532 (2019). https://doi.org/10.3390/mi10080532 |
||||
37. J. Shu, D.Tang, Anal. Chem., 92, 363 (2019). https://doi.org/10.1021/acs.analchem.9b04199 |
||||
38. S.Sharma, N.Singh, V.Tomar, R.Chandra, Biosens. Bioelectron., 107, 76 (2018). https://doi.org/10.1016/j.bios.2018.02.013 |
||||
39. M.Rizwan, N.Mohd-Naim, M.Ahmed, Sensors, 18, 166 (2018). https://doi.org/10.3390/s18010166 |
||||
40. D.Peng, B.Hu, M.Kang et al., Appl. Surface Scien., 390, 422 (2016). https://doi.org/10.1016/j.apsusc.2016.08.104 |
||||
41. Y.Zholudov, A.S.Aljebur, A.Kukoba, 2019 IEEE 39th Intern. Conf. Electronics and Nanotechnology (ELNANO 2019) - Proc., Kyiv, Ukraine, (2019). | ||||
42. W.Miao, Chem.Rev., 108, 2506 (2008). https://doi.org/10.1021/cr068083a |
||||
43. S.Majeed, W.Gao, Y.Zholudov et al., Electroanalysis, 28, 2672 (2016). https://doi.org/10.1002/elan.201600209 |
||||
44. K.Muzyka, Y.Zholudov, A.Kukoba et al., IEEE 40th Intern. Conf. Electronics Nanotechnology, (ELNANO 2020) - Proc., Kyiv, Ukraine, 552 (2020). | ||||
45. M.Hesari, Z.Ding, J. Electrochem. Soc., 163, H3116 (2015). https://doi.org/10.1149/2.0161604jes |
||||
46. Y.S.Obeng, A.J.Bard, Langmuir, 7, 195 (1991). https://doi.org/10.1021/la00049a035 |
||||
47. M.Buda, F.Gao, A.Bard, J. Solid State Electrochem., 8,706 (2004). https://doi.org/10.1007/s10008-004-0535-8 |
||||
48. Y.Zholudov, D.Snizhko, A.Kukoba et al., Electrochim. Acta, 54, 360 (2008). https://doi.org/10.1016/j.electacta.2008.07.069 |
||||
49. K.Muzyka, G.Khaled, A.Kukoba et al., IEEE 39th International Conference on Electronics and Nanotechnology, (ELNANO 2019) - Proc., Kyiv, Ukraine, 526 (2019). | ||||
50. S.Hazelton, X.Zheng, J.Zhao, D.Pierce, Sensors, 8, 5942 (2008). https://doi.org/10.3390/s8095942 |
||||
51. A.Zanut, F.Palomba, M.Rossi Scota et al., Angewandte Chemie, 132, 22042 (2020). https://doi.org/10.1002/ange.202009544 |
||||
52. Y.Zholudov, A.Kukoba, L.Sajti, B.Chichkov, IEEE 8th Intern. Conf. Advanc. Optoelectron. Lasers, Sozopol, Bulgaria (CAOL (2019). | ||||