Funct. Mater. 2021; 28 (2): 217-220.
Elastic deformation and anomalous electrical conductivity of semimetals
1V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
The possibility of a significant increase in the electrical conductivity of Group V elements of the periodic table (semimetals) under the action of unilateral compression pressure ~10-1 GPa in the area of elastic deformation is discussed. The conditions of such an elastic-stressed state can be realized for nano-sized single-crystal rods ≤100 nm in diameter. Under such conditions, the "metallization" of semimetals is possible, leading to a significant change in the energy spectrum of electrons, in particular, to a significant increase in the density of their energy states in the immediate vicinity of the Fermi level. The latter circumstance can cause an increase in the electron pairing constant and facilitate the transition of "metallized" semimetals into a superconducting state at temperatures approaching room temperature. Quantitative estimates are given that confirm the possibility of semimetals "metallization" effect realizing.
1. Y.Li, J.Hao, H.Liu, Y.Ma, J. Chem. Phys., 140, 174, (2014). | ||||
2. M.Somayazulu, M.Ahart, A.K.Mishra et al., Phys. Rev. Lett., 122, 027001 (2019). https://doi.org/10.1103/PhysRevLett.122.027001 |
||||
3. Ch.Kittel, Introduction to Solid State Physics, Nauka, Moscow (1978) [in Russian]. | ||||
4. A.S.Davydov, Solid State Theory, Nauka, Moscow (1976) [in Russian]. | ||||
5. Yu.I.Boyko, V.V.Bogdanov, R.V.Vovk, Low Temp. Phys., 46, 658 (2020). https://doi.org/10.1063/10.0001061 |
||||
6. J.P.Hirth, J.Lothe, Theory of Dislocations, Atomizdat, Moscow (1972) [in Russian]. | ||||
7. S.P.Timoshenko, J.Gudier, Theory of Elasticity, Nauka, Moscow (1979) [in Russian]. | ||||
8. S.A.Nepijko, Physical Properties of Small Metal Particles, Naukova Dumka, Kiev (1985) | ||||
9. R.A.Andrievski, J. Mater. Sci., 38, 1367 (2003). https://doi.org/10.1023/A:1022988706296 |
||||
10. J.Bardeen, L.N.Cooper, J.R.Schriefer, Phys. Rev., 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175 |
||||
11. Yu.I.Boyko, V.V.Bogdanov, R.V.Vovk, B.V.Grinyov, Functional Materials, 27, 1 (2020). | ||||
12. V. Kresin, H. Gutfreund, W. Liffle, Solid State Common, 51, 339, (1984). https://doi.org/10.1016/0038-1098(84)90701-4 |