Funct. Mater. 2021; 28 (2): 221-224.

doi:https://doi.org/10.15407/fm28.02.221

Study of hydrothermal synthesis of NiFe2O4 on morphology, crystallinity, chemical and magnetic properties

Marhaposan Situmorang, Perdinan Sinuhaji, Muhammadin Hamid, Nurul Yaumilda Hasibuan, Martha Rianna

Department of Physics, Universitas Sumatera Utara, 20155 Medan, Indonesia

Abstract: 

In this work, spinel ferrite NiFe2O4 was synthesized using the low temperature hydrothermal method with various ratios between Ni(NO3)2 and FeCl2, namely, 1:1, 1:2, 2:1 and 2:3, followed by annealing process at 300°C for 1 h. Based on analysis with a scanning electron microscope , we found that nanosheets were formed at low Ni ratio; however at a higher ratio, FeCl2, nanoparticles are present. In addition, X-ray diffraction revealed the crystallinity of NiFe2O4 with a crystalline size of approximately 15 nm. Besides, Fourier transform infrared spectroscopy explained the chemical properties of NiFe2O4 by Fe-O vibrations. Furthermore, the vibrating sample magnetometer demonstrated excellent magnetic properties of NiFe2O4, which correlated with high crystallinity of NiFe2O4 nanosheets.

Keywords: 
spinel ferrite, hydrothermal synthesis, magnetic properties.
References: 
1. U.Luders, A.Barthelemy, M.Bibes et al., Adv. Mater., 18, 1733 (2006).
https://doi.org/10.1002/adma.200500972
 
2. A.Ren, C.Liu, Y.Hong et al., Chem. Eng. J., 258, 301 (2014).
https://doi.org/10.1016/j.cej.2014.07.071
 
3. B.Palanivel, M.Shkir, T.Alshahrani, Diamond Relat. Mater., 112, 108148 (2020).
https://doi.org/10.1016/j.diamond.2020.108148
 
4. X.Shi, S.H.Wang, S.D.Swanson et al., Adv. Mater., 20, 1671 (2008).
https://doi.org/10.1002/adma.200702770
 
5. J.Hong, D.Xu, J.Yu et al., Nanotechnology, 18, 135608 (2007).
https://doi.org/10.1088/0957-4484/18/13/135608
 
6. P.Lee, K.Ishizaka, H.Suematsu et al., J. Nanopart. Res., 8, 29 (2006).
https://doi.org/10.1007/s11051-005-5427-z
 
7. A.More, V.Verenkar, S.Mojumdar et al., 94, 63 (2008)
https://doi.org/10.1007/s10973-008-9189-6
 
8. R.H.Kodama, A.E.Berkowitz, J.E.J.McNiff et al., Phys. Rev. Lett., 77, 394 (1996).
https://doi.org/10.1103/PhysRevLett.77.394
 
9. C.Thirupathy, S.C.Lims, S.J.Sundaram et al., J. King Saud University-Sci., 32, 1612 (2020).
https://doi.org/10.1016/j.jksus.2019.12.019
 
10. L.Zhang, W.Jiao, Sens. Actuat. B: Chem., 216, 293 (2015).
https://doi.org/10.1016/j.snb.2015.04.049
 
11. M.George, A.M.John, S.S.Nair et al., J. Magn. Magn. Mater., 302, 190 (2006).
https://doi.org/10.1016/j.jmmm.2005.08.029
 
12. A.Baykal, N.Kasapoglu, Y.Koseoglu et al., J. Alloys Compd., 464, 514 (2008).
https://doi.org/10.1016/j.jallcom.2007.10.041
 
13. J.Zhou, J.Ma, C.Sun et al., J. Am. Ceram. Soc., 88, 3535 (2005).
https://doi.org/10.1111/j.1551-2916.2005.00629.x
 
14. P.Sivakumar, R.Ramesh, A.Ramanand et al., Mater. Lett., 65, 1438 (2011).
https://doi.org/10.1016/j.matlet.2011.02.026
 

Current number: