Funct. Mater. 2021; 28 (2): 221-224.
Study of hydrothermal synthesis of NiFe2O4 on morphology, crystallinity, chemical and magnetic properties
Department of Physics, Universitas Sumatera Utara, 20155 Medan, Indonesia
In this work, spinel ferrite NiFe2O4 was synthesized using the low temperature hydrothermal method with various ratios between Ni(NO3)2 and FeCl2, namely, 1:1, 1:2, 2:1 and 2:3, followed by annealing process at 300°C for 1 h. Based on analysis with a scanning electron microscope , we found that nanosheets were formed at low Ni ratio; however at a higher ratio, FeCl2, nanoparticles are present. In addition, X-ray diffraction revealed the crystallinity of NiFe2O4 with a crystalline size of approximately 15 nm. Besides, Fourier transform infrared spectroscopy explained the chemical properties of NiFe2O4 by Fe-O vibrations. Furthermore, the vibrating sample magnetometer demonstrated excellent magnetic properties of NiFe2O4, which correlated with high crystallinity of NiFe2O4 nanosheets.
1. U.Luders, A.Barthelemy, M.Bibes et al., Adv. Mater., 18, 1733 (2006). https://doi.org/10.1002/adma.200500972 |
||||
2. A.Ren, C.Liu, Y.Hong et al., Chem. Eng. J., 258, 301 (2014). https://doi.org/10.1016/j.cej.2014.07.071 |
||||
3. B.Palanivel, M.Shkir, T.Alshahrani, Diamond Relat. Mater., 112, 108148 (2020). https://doi.org/10.1016/j.diamond.2020.108148 |
||||
4. X.Shi, S.H.Wang, S.D.Swanson et al., Adv. Mater., 20, 1671 (2008). https://doi.org/10.1002/adma.200702770 |
||||
5. J.Hong, D.Xu, J.Yu et al., Nanotechnology, 18, 135608 (2007). https://doi.org/10.1088/0957-4484/18/13/135608 |
||||
6. P.Lee, K.Ishizaka, H.Suematsu et al., J. Nanopart. Res., 8, 29 (2006). https://doi.org/10.1007/s11051-005-5427-z |
||||
7. A.More, V.Verenkar, S.Mojumdar et al., 94, 63 (2008) https://doi.org/10.1007/s10973-008-9189-6 |
||||
8. R.H.Kodama, A.E.Berkowitz, J.E.J.McNiff et al., Phys. Rev. Lett., 77, 394 (1996). https://doi.org/10.1103/PhysRevLett.77.394 |
||||
9. C.Thirupathy, S.C.Lims, S.J.Sundaram et al., J. King Saud University-Sci., 32, 1612 (2020). https://doi.org/10.1016/j.jksus.2019.12.019 |
||||
10. L.Zhang, W.Jiao, Sens. Actuat. B: Chem., 216, 293 (2015). https://doi.org/10.1016/j.snb.2015.04.049 |
||||
11. M.George, A.M.John, S.S.Nair et al., J. Magn. Magn. Mater., 302, 190 (2006). https://doi.org/10.1016/j.jmmm.2005.08.029 |
||||
12. A.Baykal, N.Kasapoglu, Y.Koseoglu et al., J. Alloys Compd., 464, 514 (2008). https://doi.org/10.1016/j.jallcom.2007.10.041 |
||||
13. J.Zhou, J.Ma, C.Sun et al., J. Am. Ceram. Soc., 88, 3535 (2005). https://doi.org/10.1111/j.1551-2916.2005.00629.x |
||||
14. P.Sivakumar, R.Ramesh, A.Ramanand et al., Mater. Lett., 65, 1438 (2011). https://doi.org/10.1016/j.matlet.2011.02.026 |
||||