Funct. Mater. 2021; 28 (2): 225-233.

doi:https://doi.org/10.15407/fm28.02.225

Structural and luminescent properties of the fluorine co-doped ZrO2:Y and ZrO2:Eu nanopowders

V.Chornii1,2, V.Boyko1, S.G.Nedilko2, P.Teselko2, K.Terebilenko2, M.Slobodyanik2, V.Prokopets2, V.Sheludko3, O.Gomenyuk3

1National University of Life and Environmental Sciences of Ukraine, 15 Geroiv Oborony Str., 03041 Kyiv, Ukraine
2T.Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine
3O.Dovzhenko Hlukhiv National Pedagogical University, 24 Kyivo-Moskovs'ka Str., 41401 Hlukhiv, Ukraine

Abstract: 

The results of calculations of the electronic band structure and experimental studies of zirconia (ZrO2) pure and doped with fluorine, fluorine/europium and fluorine/yttrium are reported. The incorporation of fluorine into polycrystalline zirconia was achieved by solid state synthesis. The studied powders were characterized by scanning electron microscopy, powder X-ray diffraction and luminescent spectroscopy. The samples were the mixture of the monoclinic and cubic zirconia polymorphs with a particle size distribution within 50-200 nm. Under excitation with 395 nm at T = 77 K, all the samples revealed intensive wideband host luminescence attributed to the F+ and F0 luminescence centers. Zirconium dioxide doped with europium demonstrates a linear red emission of the Eu3+ ions in addition to the host photoluminescence. In the case of samples co-doped with fluorine and europium the emission intensity of the Eu3+ ions increased by about 8 times as compared to the ZrO2:Eu sample. The effect of fluorine on structural and optical properties of zirconia was discussed taking into account experimental data and results of calculations.

Keywords: 
defect, europium, fluorine, luminescence, zirconia.
References: 
1. G.Li, Y.Tian, J.Lin, Chem. Soc. Rev., 44, 8688 (2015).
https://doi.org/10.1039/C4CS00446A
 
2. C.C.Lin, A.Meijerink, R.S.Liu, J. Phys. Chem. Lett., 7, 495 (2016).
https://doi.org/10.1021/acs.jpclett.5b02433
 
3. S.D.Meetei, S.D.Singh, N.S.Singh et al., J. Luminescence, 132, 537 (2012).
https://doi.org/10.1016/j.jlumin.2011.09.011
 
4. I.Ahemen, F.B.Dejene, J. Nanopart. Res., 19, 6 (2017).
https://doi.org/10.1007/s11051-016-3703-8
 
5. C.Zhang, C.Li, J.Yang et al., Langmuir, 25, 7078 (2009).
https://doi.org/10.1021/la900146y
 
6. K.Hachiya, H.Oku, J.Kondoh, Phys. Rev. B, 71, 064111 (2005).
https://doi.org/10.1103/PhysRevB.71.064111
 
7. K.Smits, L.Grigorjeva, W.Lojkowski, J.D.Fidelus, Phys. Stat. Solidi C, 4, 770 (2007).
https://doi.org/10.1002/pssc.200673850
 
8. Y.Cong, B.Li, S.Yue et al., J. Phys. Chem. C, 113, 13974 (2009).
https://doi.org/10.1021/jp8103497
 
9. K.Smits, L.Grigorjeva, D.Millers et al., J. Luminescence, 131, 2058 (2011).
https://doi.org/10.1016/j.jlumin.2011.05.018
 
10. S.E.Paje, J.Llopis, Appl. Phys. A, 55, 523 (1992).
https://doi.org/10.1007/BF00331667
 
11. Y.S.Vidya, K.S.Anantharaju, H.Nagabhushana et al., Spectrochim. Acta A, 135, 241 (2015).
https://doi.org/10.1016/j.saa.2014.06.151
 
12. K.Smits, L.Grigorjeva, D.Millers et al., Opt. Mater., 32, 827 (2010).
https://doi.org/10.1016/j.optmat.2010.03.002
 
13. L.Li, H.K.Yang, B.K.Moon et al., J. Nanosci. Nanotechnol., 11, 350 (2011).
https://doi.org/10.1166/jnn.2011.3217
 
14. I.Prochazka, J.Cizek, O.Melikhova et al., Acta Phys. Pol. A, 125, 760 (2014).
https://doi.org/10.12693/APhysPolA.125.760
 
15. M.A.Borik, T.V.Volkova, E.E. Lomonova et al., Opt. Spectrosc., 122, 580 (2017).
https://doi.org/10.1134/S0030400X17040087
 
16. S.Gutzov, M.Kohls, M.Lerch, J. Phys. Chem. Solids, 61, 1301 (2000).
https://doi.org/10.1016/S0022-3697(99)00406-0
 
17. S.Gutzov, M.Lerch, Opt. Mater., 24, 547 (2003).
https://doi.org/10.1016/S0925-3467(03)00090-9
 
18. F.Stavale, L.Pascua, N.Nilius, H.J.Freund, J. Phys. Chem. C, 118, 13693 (2014).
https://doi.org/10.1021/jp5035536
 
19. A.Fuertes, Mater. Horizons, 2, 453 (2015).
https://doi.org/10.1039/C5MH00046G
 
20. T.Takeda, R.J.Xie, T.Suehiro, N.Hirosaki, Prog. Solid State Chem., 51, 41 (2017).
https://doi.org/10.1016/j.progsolidstchem.2017.11.002
 
21. M.Garcia-Hipolito, C.Falcony, M.A.Aguilar-Frutis, J.Azorin-Nieto, Appl. Phys. Lett., 79, 4369 (2001).
https://doi.org/10.1063/1.1428110
 
22. J.Chen, Z.Feng, J.Shi et al., Chem. Phys. Lett., 401, 104 (2005).
https://doi.org/10.1016/j.cplett.2004.11.039
 
23. U.J.Gibson, K.D.Cornett, Opt. Lett., 20, 2201 (1995).
https://doi.org/10.1364/OL.20.002201
 
24. S.Park, T.Vogt, J. Luminescence. 129, 952 (2009)
https://doi.org/10.1016/j.jlumin.2009.04.005
 
25. V.Chornii, S.G.Nedilko, M.Miroshnichenko et al., Mater. Res. Bull., 90, 237 (2017).
https://doi.org/10.1016/j.materresbull.2017.02.033
 
26. P.Blaha, K.Schwarz, G.Madsen et al., WIEN2k, Wien, Austria (2001).
 
27. C.J.Howard, R.J.Hill, B.E.Reichert, Acta Crystallogr. B, 44, 116 (1988).
https://doi.org/10.1107/S0108768187010279
 
28. Y.A.Hizhnyi, S.G.Nedilko, V.P.Chornii et al., J. Alloys Compd., 614, 420 (2014).
https://doi.org/10.1016/j.jallcom.2014.06.111
 
29. S.Maschio, B.Linda, S.Bruckner, G.Pezzotti, J. Ceram. Soc. Japan, 108, 593 (2000).
https://doi.org/10.2109/jcersj.108.1258_593
 
30. T.Sato, M.Shimada, J. Am. Ceram. Soc., 67, C-212 (1984).
https://doi.org/10.1111/j.1151-2916.1984.tb19668.x
 
31. R.C.Garvie, J. Phys. Chem., 69, 1238 (1965).
https://doi.org/10.1021/j100888a024
 
32. T.Chraska, A.H.King, C.C.Berndt, Mater. Sci. Eng. A, 286, 169 (2000).
https://doi.org/10.1016/S0921-5093(00)00625-0
 
33. S.K.Pandey, J. Phys: Condens. Matter, 24, 335801 (2012).
https://doi.org/10.1088/0953-8984/24/33/335801
 
34. F.Zandiehnadem, R.A.Murray, W.Y.Ching, Physica B+C, 150, 19 (1988).
https://doi.org/10.1016/0378-4363(88)90099-X
 
35. H.Jiang, R.I.Gomez-Abal, P.Rinke, M.Scheffler, Phys. Rev. B, 81, 085119 (2010).
https://doi.org/10.1103/PhysRevB.81.085119
 
36. J.Li, S.Meng, J.Niu, H.Lu, J. Adv. Ceram., 6, 43 (2017).
https://doi.org/10.1007/s40145-016-0216-y
 
37. T.V.Perevalov, D.R.Islamov, Microelectron. Eng., 178, 275 (2017).
https://doi.org/10.1016/j.mee.2017.05.036
 
38. D.Nagle, V.R.PaiVerneker, A.N.Petelin, G.Groff, Mat. Res. Bull., 24, 619 (1989).
https://doi.org/10.1016/0025-5408(89)90110-4
 
39. N.Korsunska, V.Papusha, O.Kolomys et al., Phys. Stat. Solidi C, 11, 1417 (2014).
https://doi.org/10.1002/pssc.201300597
 
40. E.Aleksanyan, M.Kirm, E.Feldbach, V.Harutyunyan, Radiat. Meas., 90, 84 (2016).
https://doi.org/10.1016/j.radmeas.2016.01.001
 
41. C.Imparato, M.Fantauzzi, C.Passiu et al., J. Phys. Chem. C, 123, 11581 (2019).
https://doi.org/10.1021/acs.jpcc.9b00411
 
42. J.M.Carvalho, L.C.Rodrigues, J.Holsa et al., Opt. Mater. Express, 2, 331 (2012).
https://doi.org/10.1364/OME.2.000331
 
43. R.Espinoza-Gonzalez, E.Mosquera, I.Moglia et al., Ceram. Int., 40, 15577 (2014).
https://doi.org/10.1016/j.ceramint.2014.07.034
 
44. D.W. McComb, Phys. Rev. B, 54, 7094 (1996).
https://doi.org/10.1103/PhysRevB.54.7094
 

Current number: