Funct. Mater. 2021; 28 (2): 225-233.
Structural and luminescent properties of the fluorine co-doped ZrO2:Y and ZrO2:Eu nanopowders
1National University of Life and Environmental Sciences of Ukraine, 15 Geroiv Oborony Str., 03041 Kyiv, Ukraine
2T.Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine
3O.Dovzhenko Hlukhiv National Pedagogical University, 24 Kyivo-Moskovs'ka Str., 41401 Hlukhiv, Ukraine
The results of calculations of the electronic band structure and experimental studies of zirconia (ZrO2) pure and doped with fluorine, fluorine/europium and fluorine/yttrium are reported. The incorporation of fluorine into polycrystalline zirconia was achieved by solid state synthesis. The studied powders were characterized by scanning electron microscopy, powder X-ray diffraction and luminescent spectroscopy. The samples were the mixture of the monoclinic and cubic zirconia polymorphs with a particle size distribution within 50-200 nm. Under excitation with 395 nm at T = 77 K, all the samples revealed intensive wideband host luminescence attributed to the F+ and F0 luminescence centers. Zirconium dioxide doped with europium demonstrates a linear red emission of the Eu3+ ions in addition to the host photoluminescence. In the case of samples co-doped with fluorine and europium the emission intensity of the Eu3+ ions increased by about 8 times as compared to the ZrO2:Eu sample. The effect of fluorine on structural and optical properties of zirconia was discussed taking into account experimental data and results of calculations.
1. G.Li, Y.Tian, J.Lin, Chem. Soc. Rev., 44, 8688 (2015). https://doi.org/10.1039/C4CS00446A |
||||
2. C.C.Lin, A.Meijerink, R.S.Liu, J. Phys. Chem. Lett., 7, 495 (2016). https://doi.org/10.1021/acs.jpclett.5b02433 |
||||
3. S.D.Meetei, S.D.Singh, N.S.Singh et al., J. Luminescence, 132, 537 (2012). https://doi.org/10.1016/j.jlumin.2011.09.011 |
||||
4. I.Ahemen, F.B.Dejene, J. Nanopart. Res., 19, 6 (2017). https://doi.org/10.1007/s11051-016-3703-8 |
||||
5. C.Zhang, C.Li, J.Yang et al., Langmuir, 25, 7078 (2009). https://doi.org/10.1021/la900146y |
||||
6. K.Hachiya, H.Oku, J.Kondoh, Phys. Rev. B, 71, 064111 (2005). https://doi.org/10.1103/PhysRevB.71.064111 |
||||
7. K.Smits, L.Grigorjeva, W.Lojkowski, J.D.Fidelus, Phys. Stat. Solidi C, 4, 770 (2007). https://doi.org/10.1002/pssc.200673850 |
||||
8. Y.Cong, B.Li, S.Yue et al., J. Phys. Chem. C, 113, 13974 (2009). https://doi.org/10.1021/jp8103497 |
||||
9. K.Smits, L.Grigorjeva, D.Millers et al., J. Luminescence, 131, 2058 (2011). https://doi.org/10.1016/j.jlumin.2011.05.018 |
||||
10. S.E.Paje, J.Llopis, Appl. Phys. A, 55, 523 (1992). https://doi.org/10.1007/BF00331667 |
||||
11. Y.S.Vidya, K.S.Anantharaju, H.Nagabhushana et al., Spectrochim. Acta A, 135, 241 (2015). https://doi.org/10.1016/j.saa.2014.06.151 |
||||
12. K.Smits, L.Grigorjeva, D.Millers et al., Opt. Mater., 32, 827 (2010). https://doi.org/10.1016/j.optmat.2010.03.002 |
||||
13. L.Li, H.K.Yang, B.K.Moon et al., J. Nanosci. Nanotechnol., 11, 350 (2011). https://doi.org/10.1166/jnn.2011.3217 |
||||
14. I.Prochazka, J.Cizek, O.Melikhova et al., Acta Phys. Pol. A, 125, 760 (2014). https://doi.org/10.12693/APhysPolA.125.760 |
||||
15. M.A.Borik, T.V.Volkova, E.E. Lomonova et al., Opt. Spectrosc., 122, 580 (2017). https://doi.org/10.1134/S0030400X17040087 |
||||
16. S.Gutzov, M.Kohls, M.Lerch, J. Phys. Chem. Solids, 61, 1301 (2000). https://doi.org/10.1016/S0022-3697(99)00406-0 |
||||
17. S.Gutzov, M.Lerch, Opt. Mater., 24, 547 (2003). https://doi.org/10.1016/S0925-3467(03)00090-9 |
||||
18. F.Stavale, L.Pascua, N.Nilius, H.J.Freund, J. Phys. Chem. C, 118, 13693 (2014). https://doi.org/10.1021/jp5035536 |
||||
19. A.Fuertes, Mater. Horizons, 2, 453 (2015). https://doi.org/10.1039/C5MH00046G |
||||
20. T.Takeda, R.J.Xie, T.Suehiro, N.Hirosaki, Prog. Solid State Chem., 51, 41 (2017). https://doi.org/10.1016/j.progsolidstchem.2017.11.002 |
||||
21. M.Garcia-Hipolito, C.Falcony, M.A.Aguilar-Frutis, J.Azorin-Nieto, Appl. Phys. Lett., 79, 4369 (2001). https://doi.org/10.1063/1.1428110 |
||||
22. J.Chen, Z.Feng, J.Shi et al., Chem. Phys. Lett., 401, 104 (2005). https://doi.org/10.1016/j.cplett.2004.11.039 |
||||
23. U.J.Gibson, K.D.Cornett, Opt. Lett., 20, 2201 (1995). https://doi.org/10.1364/OL.20.002201 |
||||
24. S.Park, T.Vogt, J. Luminescence. 129, 952 (2009) https://doi.org/10.1016/j.jlumin.2009.04.005 |
||||
25. V.Chornii, S.G.Nedilko, M.Miroshnichenko et al., Mater. Res. Bull., 90, 237 (2017). https://doi.org/10.1016/j.materresbull.2017.02.033 |
||||
26. P.Blaha, K.Schwarz, G.Madsen et al., WIEN2k, Wien, Austria (2001). | ||||
27. C.J.Howard, R.J.Hill, B.E.Reichert, Acta Crystallogr. B, 44, 116 (1988). https://doi.org/10.1107/S0108768187010279 |
||||
28. Y.A.Hizhnyi, S.G.Nedilko, V.P.Chornii et al., J. Alloys Compd., 614, 420 (2014). https://doi.org/10.1016/j.jallcom.2014.06.111 |
||||
29. S.Maschio, B.Linda, S.Bruckner, G.Pezzotti, J. Ceram. Soc. Japan, 108, 593 (2000). https://doi.org/10.2109/jcersj.108.1258_593 |
||||
30. T.Sato, M.Shimada, J. Am. Ceram. Soc., 67, C-212 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19668.x |
||||
31. R.C.Garvie, J. Phys. Chem., 69, 1238 (1965). https://doi.org/10.1021/j100888a024 |
||||
32. T.Chraska, A.H.King, C.C.Berndt, Mater. Sci. Eng. A, 286, 169 (2000). https://doi.org/10.1016/S0921-5093(00)00625-0 |
||||
33. S.K.Pandey, J. Phys: Condens. Matter, 24, 335801 (2012). https://doi.org/10.1088/0953-8984/24/33/335801 |
||||
34. F.Zandiehnadem, R.A.Murray, W.Y.Ching, Physica B+C, 150, 19 (1988). https://doi.org/10.1016/0378-4363(88)90099-X |
||||
35. H.Jiang, R.I.Gomez-Abal, P.Rinke, M.Scheffler, Phys. Rev. B, 81, 085119 (2010). https://doi.org/10.1103/PhysRevB.81.085119 |
||||
36. J.Li, S.Meng, J.Niu, H.Lu, J. Adv. Ceram., 6, 43 (2017). https://doi.org/10.1007/s40145-016-0216-y |
||||
37. T.V.Perevalov, D.R.Islamov, Microelectron. Eng., 178, 275 (2017). https://doi.org/10.1016/j.mee.2017.05.036 |
||||
38. D.Nagle, V.R.PaiVerneker, A.N.Petelin, G.Groff, Mat. Res. Bull., 24, 619 (1989). https://doi.org/10.1016/0025-5408(89)90110-4 |
||||
39. N.Korsunska, V.Papusha, O.Kolomys et al., Phys. Stat. Solidi C, 11, 1417 (2014). https://doi.org/10.1002/pssc.201300597 |
||||
40. E.Aleksanyan, M.Kirm, E.Feldbach, V.Harutyunyan, Radiat. Meas., 90, 84 (2016). https://doi.org/10.1016/j.radmeas.2016.01.001 |
||||
41. C.Imparato, M.Fantauzzi, C.Passiu et al., J. Phys. Chem. C, 123, 11581 (2019). https://doi.org/10.1021/acs.jpcc.9b00411 |
||||
42. J.M.Carvalho, L.C.Rodrigues, J.Holsa et al., Opt. Mater. Express, 2, 331 (2012). https://doi.org/10.1364/OME.2.000331 |
||||
43. R.Espinoza-Gonzalez, E.Mosquera, I.Moglia et al., Ceram. Int., 40, 15577 (2014). https://doi.org/10.1016/j.ceramint.2014.07.034 |
||||
44. D.W. McComb, Phys. Rev. B, 54, 7094 (1996). https://doi.org/10.1103/PhysRevB.54.7094 |
||||