Funct. Mater. 2021; 28 (2): 225-233.
Structural and luminescent properties of the fluorine co-doped ZrO2:Y and ZrO2:Eu nanopowders
1National University of Life and Environmental Sciences of Ukraine, 15 Geroiv Oborony Str., 03041 Kyiv, Ukraine
2T.Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine
3O.Dovzhenko Hlukhiv National Pedagogical University, 24 Kyivo-Moskovs'ka Str., 41401 Hlukhiv, Ukraine
The results of calculations of the electronic band structure and experimental studies of zirconia (ZrO2) pure and doped with fluorine, fluorine/europium and fluorine/yttrium are reported. The incorporation of fluorine into polycrystalline zirconia was achieved by solid state synthesis. The studied powders were characterized by scanning electron microscopy, powder X-ray diffraction and luminescent spectroscopy. The samples were the mixture of the monoclinic and cubic zirconia polymorphs with a particle size distribution within 50-200 nm. Under excitation with 395 nm at T = 77 K, all the samples revealed intensive wideband host luminescence attributed to the F+ and F0 luminescence centers. Zirconium dioxide doped with europium demonstrates a linear red emission of the Eu3+ ions in addition to the host photoluminescence. In the case of samples co-doped with fluorine and europium the emission intensity of the Eu3+ ions increased by about 8 times as compared to the ZrO2:Eu sample. The effect of fluorine on structural and optical properties of zirconia was discussed taking into account experimental data and results of calculations.
| 1. G.Li, Y.Tian, J.Lin, Chem. Soc. Rev., 44, 8688 (2015). https://doi.org/10.1039/C4CS00446A |
||||
| 2. C.C.Lin, A.Meijerink, R.S.Liu, J. Phys. Chem. Lett., 7, 495 (2016). https://doi.org/10.1021/acs.jpclett.5b02433 |
||||
| 3. S.D.Meetei, S.D.Singh, N.S.Singh et al., J. Luminescence, 132, 537 (2012). https://doi.org/10.1016/j.jlumin.2011.09.011 |
||||
| 4. I.Ahemen, F.B.Dejene, J. Nanopart. Res., 19, 6 (2017). https://doi.org/10.1007/s11051-016-3703-8 |
||||
| 5. C.Zhang, C.Li, J.Yang et al., Langmuir, 25, 7078 (2009). https://doi.org/10.1021/la900146y |
||||
| 6. K.Hachiya, H.Oku, J.Kondoh, Phys. Rev. B, 71, 064111 (2005). https://doi.org/10.1103/PhysRevB.71.064111 |
||||
| 7. K.Smits, L.Grigorjeva, W.Lojkowski, J.D.Fidelus, Phys. Stat. Solidi C, 4, 770 (2007). https://doi.org/10.1002/pssc.200673850 |
||||
| 8. Y.Cong, B.Li, S.Yue et al., J. Phys. Chem. C, 113, 13974 (2009). https://doi.org/10.1021/jp8103497 |
||||
| 9. K.Smits, L.Grigorjeva, D.Millers et al., J. Luminescence, 131, 2058 (2011). https://doi.org/10.1016/j.jlumin.2011.05.018 |
||||
| 10. S.E.Paje, J.Llopis, Appl. Phys. A, 55, 523 (1992). https://doi.org/10.1007/BF00331667 |
||||
| 11. Y.S.Vidya, K.S.Anantharaju, H.Nagabhushana et al., Spectrochim. Acta A, 135, 241 (2015). https://doi.org/10.1016/j.saa.2014.06.151 |
||||
| 12. K.Smits, L.Grigorjeva, D.Millers et al., Opt. Mater., 32, 827 (2010). https://doi.org/10.1016/j.optmat.2010.03.002 |
||||
| 13. L.Li, H.K.Yang, B.K.Moon et al., J. Nanosci. Nanotechnol., 11, 350 (2011). https://doi.org/10.1166/jnn.2011.3217 |
||||
| 14. I.Prochazka, J.Cizek, O.Melikhova et al., Acta Phys. Pol. A, 125, 760 (2014). https://doi.org/10.12693/APhysPolA.125.760 |
||||
| 15. M.A.Borik, T.V.Volkova, E.E. Lomonova et al., Opt. Spectrosc., 122, 580 (2017). https://doi.org/10.1134/S0030400X17040087 |
||||
| 16. S.Gutzov, M.Kohls, M.Lerch, J. Phys. Chem. Solids, 61, 1301 (2000). https://doi.org/10.1016/S0022-3697(99)00406-0 |
||||
| 17. S.Gutzov, M.Lerch, Opt. Mater., 24, 547 (2003). https://doi.org/10.1016/S0925-3467(03)00090-9 |
||||
| 18. F.Stavale, L.Pascua, N.Nilius, H.J.Freund, J. Phys. Chem. C, 118, 13693 (2014). https://doi.org/10.1021/jp5035536 |
||||
| 19. A.Fuertes, Mater. Horizons, 2, 453 (2015). https://doi.org/10.1039/C5MH00046G |
||||
| 20. T.Takeda, R.J.Xie, T.Suehiro, N.Hirosaki, Prog. Solid State Chem., 51, 41 (2017). https://doi.org/10.1016/j.progsolidstchem.2017.11.002 |
||||
| 21. M.Garcia-Hipolito, C.Falcony, M.A.Aguilar-Frutis, J.Azorin-Nieto, Appl. Phys. Lett., 79, 4369 (2001). https://doi.org/10.1063/1.1428110 |
||||
| 22. J.Chen, Z.Feng, J.Shi et al., Chem. Phys. Lett., 401, 104 (2005). https://doi.org/10.1016/j.cplett.2004.11.039 |
||||
| 23. U.J.Gibson, K.D.Cornett, Opt. Lett., 20, 2201 (1995). https://doi.org/10.1364/OL.20.002201 |
||||
| 24. S.Park, T.Vogt, J. Luminescence. 129, 952 (2009) https://doi.org/10.1016/j.jlumin.2009.04.005 |
||||
| 25. V.Chornii, S.G.Nedilko, M.Miroshnichenko et al., Mater. Res. Bull., 90, 237 (2017). https://doi.org/10.1016/j.materresbull.2017.02.033 |
||||
| 26. P.Blaha, K.Schwarz, G.Madsen et al., WIEN2k, Wien, Austria (2001). | ||||
| 27. C.J.Howard, R.J.Hill, B.E.Reichert, Acta Crystallogr. B, 44, 116 (1988). https://doi.org/10.1107/S0108768187010279 |
||||
| 28. Y.A.Hizhnyi, S.G.Nedilko, V.P.Chornii et al., J. Alloys Compd., 614, 420 (2014). https://doi.org/10.1016/j.jallcom.2014.06.111 |
||||
| 29. S.Maschio, B.Linda, S.Bruckner, G.Pezzotti, J. Ceram. Soc. Japan, 108, 593 (2000). https://doi.org/10.2109/jcersj.108.1258_593 |
||||
| 30. T.Sato, M.Shimada, J. Am. Ceram. Soc., 67, C-212 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19668.x |
||||
| 31. R.C.Garvie, J. Phys. Chem., 69, 1238 (1965). https://doi.org/10.1021/j100888a024 |
||||
| 32. T.Chraska, A.H.King, C.C.Berndt, Mater. Sci. Eng. A, 286, 169 (2000). https://doi.org/10.1016/S0921-5093(00)00625-0 |
||||
| 33. S.K.Pandey, J. Phys: Condens. Matter, 24, 335801 (2012). https://doi.org/10.1088/0953-8984/24/33/335801 |
||||
| 34. F.Zandiehnadem, R.A.Murray, W.Y.Ching, Physica B+C, 150, 19 (1988). https://doi.org/10.1016/0378-4363(88)90099-X |
||||
| 35. H.Jiang, R.I.Gomez-Abal, P.Rinke, M.Scheffler, Phys. Rev. B, 81, 085119 (2010). https://doi.org/10.1103/PhysRevB.81.085119 |
||||
| 36. J.Li, S.Meng, J.Niu, H.Lu, J. Adv. Ceram., 6, 43 (2017). https://doi.org/10.1007/s40145-016-0216-y |
||||
| 37. T.V.Perevalov, D.R.Islamov, Microelectron. Eng., 178, 275 (2017). https://doi.org/10.1016/j.mee.2017.05.036 |
||||
| 38. D.Nagle, V.R.PaiVerneker, A.N.Petelin, G.Groff, Mat. Res. Bull., 24, 619 (1989). https://doi.org/10.1016/0025-5408(89)90110-4 |
||||
| 39. N.Korsunska, V.Papusha, O.Kolomys et al., Phys. Stat. Solidi C, 11, 1417 (2014). https://doi.org/10.1002/pssc.201300597 |
||||
| 40. E.Aleksanyan, M.Kirm, E.Feldbach, V.Harutyunyan, Radiat. Meas., 90, 84 (2016). https://doi.org/10.1016/j.radmeas.2016.01.001 |
||||
| 41. C.Imparato, M.Fantauzzi, C.Passiu et al., J. Phys. Chem. C, 123, 11581 (2019). https://doi.org/10.1021/acs.jpcc.9b00411 |
||||
| 42. J.M.Carvalho, L.C.Rodrigues, J.Holsa et al., Opt. Mater. Express, 2, 331 (2012). https://doi.org/10.1364/OME.2.000331 |
||||
| 43. R.Espinoza-Gonzalez, E.Mosquera, I.Moglia et al., Ceram. Int., 40, 15577 (2014). https://doi.org/10.1016/j.ceramint.2014.07.034 |
||||
| 44. D.W. McComb, Phys. Rev. B, 54, 7094 (1996). https://doi.org/10.1103/PhysRevB.54.7094 |
||||