Funct. Mater. 2021; 28 (2): 234-240.

doi:https://doi.org/10.15407/fm28.02.234

New light-sensitive materials with photocatalytic activity in the visible and near infrared ranges, based on titanium dioxide and a polymethine dye

I.M. Kobasa1, I.V.Kondrachuk1, I.V.Kurdyukova2, A.A.Ishchenko2, A.Ya.Velyka3

1Yu.Fedkovych National University of Chernivtsi, 2 Kotsyubynsky St., 58012 Chernivtsi, Ukraine
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmans'ka St., 02660 Kyiv, Ukraine
3Bucovina State Medical University, 2 Teatralna Sq., 58002 Chernivtsi, Ukraine

Abstract: 

Some spectral, electrochemical and energy transformation parameters have been investigated for the polymethine dye 2,4,5,7-tetranitro-9-(3-(2,4,5,7-tetranitro-9H-fluoren-9-ylidene)prop-1-en-1-yl)-9H-fluoren-9-ide triethylammonium (D), which exhibits three absorbance bands. The nature of the electrode processes was elucidated and the reduction and oxidation potentials of the dye were determined using cyclic voltammogram data recorded for the ground state of the dye. Then they were recalculated into the corresponding photoexcited reduction and oxidation potentials. The heterostructure (HS) titanium dioxide/dye/polyepoxypropylcarbazole (P/D/TiO2) has been synthesized and the diffuse reflectance spectra were recorded. Then they were transformed into the absorbance spectra for a series of HS with different compositions. Afterwards, the main parameters of HS spectra were found: the short-wavelength and long-wavelength polymethine absorbance maximum positions, their widths and intensity ratio. A comparison between the spectra of D as a component of HS and D as a solute has also been done. Photocatalytic activity (PA) of HS was determined for the model reaction of methylene blue reduction running under irradiation with light of different spectral ranges. The HS spectral parameters and corresponding PA values were analyzed for the samples with different dye content. The results are analyzed in terms of the energy transformation related to the electron exchange processes running in HS.

Keywords: 
anionic polymethine dye, sensitization, heterostructure, titanium dioxide.
References: 
1. Y.Nam, J.H.Lim, K.Ch.Ko et al., Mater. Chem. A, 7, 13833 (2019).
https://doi.org/10.1039/C9TA03385H
 
2. S.A.Lopes, B.Sanchez-Lengeling, J.G.Soares et al., Joule, 1, 857 (2017).
https://doi.org/10.1016/j.joule.2017.10.006
 
3. Kondratyeva, L. Orzel, I.Kobasa et al., Mater. Sci. Semicond. Proc., 42, 62 (2016).
https://doi.org/10.1016/j.mssp.2015.08.002
 
4. N.Kh.Ibrayev, E.V.Seliverstova, A.A.Ishchenko et al., J. Photochem. Photobiol. A, 346, 570 (2017).
https://doi.org/10.1016/j.jphotochem.2017.06.029
 
5. A.K.Singh, A.Maibam, B.H.Javaregowda et al., Phys. Chem. C, 124, 18436 (2020).
https://doi.org/10.1021/acs.jpcc.0c05176
 
6. M.Ch.Sil, L.S.Chen, Ch.W.Lai et al., Mater. Chem. C, 8, 11407 (2020).
https://doi.org/10.1039/D0TC01388A
 
7. P.K.D.D.P.Pitigala, M.M.Henary, A.G.U.Perera, JSLAAS, 1, 70 (2018).
 
8. J.D.Angulo, I.G.Bonilla, Ch.J.Tohapanta, Photochem. Photobiol. Sci., 18, 897 (2019).
https://doi.org/10.1039/C8PP00270C
 
9. L.de Oliveira Pereira, I.M.Sales, L.Pereira Zampiere et al., J. Photochem. Photobiol. A.: Chem., 382, 111907 (2019).
https://doi.org/10.1016/j.jphotochem.2019.111907
 
10. A.L.Luna, D.Dragoe, K.Wang et al., J. Phys. Chem. C, 121, 14302 (2017).
https://doi.org/10.1021/acs.jpcc.7b01167
 
11. I.M.Kobasa, I.V.Kondratyeva, Yu.V.Kropelnytska, Funct. Mater. Lett., 12, 1950038 (2019).
https://doi.org/10.1142/S1793604719500383
 
12. I.M.Kobasa, I.V.Kondratyeva, L.I.Odosiy et al., Res. Chem. Intermed., 45, 4043 (2019).
https://doi.org/10.1007/s11164-019-03889-y
 
13. I.M.Kobasa, I.V.Kondratyeva, Yu.V.Kropelnytska, Funct. Mater. Lett., 11, 1850017 (2018).
https://doi.org/10.1142/S1793604718500170
 
14. R.Bisht, M.Fairoos, A.K.Singh et al., J. Org. Chem., 82, 1920 (2017).
https://doi.org/10.1021/acs.joc.6b02670
 
15. I.M.Kobasa, I.V.Kondratyeva, Polish J. Chem., 82, 1639 (2008).
 
16. I.Kobasa, I.Kondratyeva, L.Odosiy, Canad. J. Chem., 88, 659 (2010).
https://doi.org/10.1139/V10-058
 
17. I.Kobasa, I.Kondratyeva, N.Husiak, Funct. Mater. Lett., 3, 233 (2010).
https://doi.org/10.1142/S1793604710001317
 
18. V.Pokhodenko, N.Guba, A.Kryukov, Functional Materials, 5, 387 (1998).
 
19. I.V.Kurdyukova, A.A.Ishchenko, Rus. Chem. Rev., 81, 258 (2012).
https://doi.org/10.1070/RC2012v081n03ABEH004211
 
20. I.V.Kurdyukova, N.A.Derevyanko, A.A.Ishchenko et al., Rus. Chem. Bull., 61, 287 (2012).
https://doi.org/10.1007/s11172-012-0040-7
 
21. I.M.Kobasa, I.V.Kondratyeva, Y.I.Gnatyuk, Theoret. Exp. Chem., 44, 42 (2008).
https://doi.org/10.1007/s11237-008-9003-3
 
22. N.B.Husiak, I.M.Kobasa, S.S.Kurek, Funct. Mater. Lett., 7, 1450030 (2014).
https://doi.org/10.1142/S1793604714500301
 
23. Ya.S.Mazurkevich, I.M.Kobasa, Inorg. Mat., 38, 522 (2002).
https://doi.org/10.1023/A:1015487425528
 
24. N.A.Davidenko, A.A.Ishchenko, Theor. Experim. Chem., 38, 88 (2002).
https://doi.org/10.1023/A:1016088000862
 
25. A.A.Ishchenko, I.L.Mushkalo, N.A.Derevyanko, J. Inform. Record. Mater., 17, 39 (1989).
 
26. A.A.Ishchenko, Pure Appl. Chem., 80, 1525 (2008).
https://doi.org/10.1351/pac200880071525
 
27. A.I.Kiprianov, Color and Structure of Cyanine Dyes, Naukova Dumka, Kiev (1979).
 
28. M.Gratzel (eds.), Energy Resources Through Photochemistry and Catalysis, Academic Press, New York (1983).
 
29. P.V.Kamat, Chem. Rev., 93, 276 (1993).
https://doi.org/10.1021/cr00017a013
 
30. M.Salkauskas, Chemical Metallization of Plastics, Nauka, Leningrad (1967) [in Russian].
 
31. F.E.Osterloh, Chem. Mater., 20, 35 (2008).
https://doi.org/10.1021/cm7024203
 
32. A.I.Krykov, A.L.Stroyuk, S.Ya.Kuchmiy, V.D,Pohodenko, Nanophotocatalysis, Academperiodika, Kiev (2013).
 
33. A.A.Ishchenko, Theor. Exper. Chem. 34, 191 (1998).
https://doi.org/10.1007/BF02523249
 
34. A.V.Kulinich, N.A.Derevyanko, A.A.Ishchenko et al., Dyes Pigments, 161, 24 (2019).
https://doi.org/10.1016/j.dyepig.2018.09.031
 
35. I.V.Kurdyukova, A.A.Ishchenko, D.D.Mysyk, Dyes Pigments, 142, 201 (2017).
https://doi.org/10.1016/j.dyepig.2017.03.039
 
36. B.O'regan, M.Gratzel, Nature, 353, 737 (1991).
https://doi.org/10.1038/353737a0
 
37. N.Ibrayev, E.Seliverstova, N.Nuraje, A.Ishchenko, Mater. Sci. Semicond. Proces. 31, 358 (2015).
https://doi.org/10.1016/j.mssp.2014.12.006
 

Current number: