Funct. Mater. 2021; 28 (2): 234-240.
New light-sensitive materials with photocatalytic activity in the visible and near infrared ranges, based on titanium dioxide and a polymethine dye
1Yu.Fedkovych National University of Chernivtsi, 2 Kotsyubynsky St., 58012 Chernivtsi, Ukraine
2Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmans'ka St., 02660 Kyiv, Ukraine
3Bucovina State Medical University, 2 Teatralna Sq., 58002 Chernivtsi, Ukraine
Some spectral, electrochemical and energy transformation parameters have been investigated for the polymethine dye 2,4,5,7-tetranitro-9-(3-(2,4,5,7-tetranitro-9H-fluoren-9-ylidene)prop-1-en-1-yl)-9H-fluoren-9-ide triethylammonium (D), which exhibits three absorbance bands. The nature of the electrode processes was elucidated and the reduction and oxidation potentials of the dye were determined using cyclic voltammogram data recorded for the ground state of the dye. Then they were recalculated into the corresponding photoexcited reduction and oxidation potentials. The heterostructure (HS) titanium dioxide/dye/polyepoxypropylcarbazole (P/D/TiO2) has been synthesized and the diffuse reflectance spectra were recorded. Then they were transformed into the absorbance spectra for a series of HS with different compositions. Afterwards, the main parameters of HS spectra were found: the short-wavelength and long-wavelength polymethine absorbance maximum positions, their widths and intensity ratio. A comparison between the spectra of D as a component of HS and D as a solute has also been done. Photocatalytic activity (PA) of HS was determined for the model reaction of methylene blue reduction running under irradiation with light of different spectral ranges. The HS spectral parameters and corresponding PA values were analyzed for the samples with different dye content. The results are analyzed in terms of the energy transformation related to the electron exchange processes running in HS.
1. Y.Nam, J.H.Lim, K.Ch.Ko et al., Mater. Chem. A, 7, 13833 (2019). https://doi.org/10.1039/C9TA03385H |
||||
2. S.A.Lopes, B.Sanchez-Lengeling, J.G.Soares et al., Joule, 1, 857 (2017). https://doi.org/10.1016/j.joule.2017.10.006 |
||||
3. Kondratyeva, L. Orzel, I.Kobasa et al., Mater. Sci. Semicond. Proc., 42, 62 (2016). https://doi.org/10.1016/j.mssp.2015.08.002 |
||||
4. N.Kh.Ibrayev, E.V.Seliverstova, A.A.Ishchenko et al., J. Photochem. Photobiol. A, 346, 570 (2017). https://doi.org/10.1016/j.jphotochem.2017.06.029 |
||||
5. A.K.Singh, A.Maibam, B.H.Javaregowda et al., Phys. Chem. C, 124, 18436 (2020). https://doi.org/10.1021/acs.jpcc.0c05176 |
||||
6. M.Ch.Sil, L.S.Chen, Ch.W.Lai et al., Mater. Chem. C, 8, 11407 (2020). https://doi.org/10.1039/D0TC01388A |
||||
7. P.K.D.D.P.Pitigala, M.M.Henary, A.G.U.Perera, JSLAAS, 1, 70 (2018). | ||||
8. J.D.Angulo, I.G.Bonilla, Ch.J.Tohapanta, Photochem. Photobiol. Sci., 18, 897 (2019). https://doi.org/10.1039/C8PP00270C |
||||
9. L.de Oliveira Pereira, I.M.Sales, L.Pereira Zampiere et al., J. Photochem. Photobiol. A.: Chem., 382, 111907 (2019). https://doi.org/10.1016/j.jphotochem.2019.111907 |
||||
10. A.L.Luna, D.Dragoe, K.Wang et al., J. Phys. Chem. C, 121, 14302 (2017). https://doi.org/10.1021/acs.jpcc.7b01167 |
||||
11. I.M.Kobasa, I.V.Kondratyeva, Yu.V.Kropelnytska, Funct. Mater. Lett., 12, 1950038 (2019). https://doi.org/10.1142/S1793604719500383 |
||||
12. I.M.Kobasa, I.V.Kondratyeva, L.I.Odosiy et al., Res. Chem. Intermed., 45, 4043 (2019). https://doi.org/10.1007/s11164-019-03889-y |
||||
13. I.M.Kobasa, I.V.Kondratyeva, Yu.V.Kropelnytska, Funct. Mater. Lett., 11, 1850017 (2018). https://doi.org/10.1142/S1793604718500170 |
||||
14. R.Bisht, M.Fairoos, A.K.Singh et al., J. Org. Chem., 82, 1920 (2017). https://doi.org/10.1021/acs.joc.6b02670 |
||||
15. I.M.Kobasa, I.V.Kondratyeva, Polish J. Chem., 82, 1639 (2008). | ||||
16. I.Kobasa, I.Kondratyeva, L.Odosiy, Canad. J. Chem., 88, 659 (2010). https://doi.org/10.1139/V10-058 |
||||
17. I.Kobasa, I.Kondratyeva, N.Husiak, Funct. Mater. Lett., 3, 233 (2010). https://doi.org/10.1142/S1793604710001317 |
||||
18. V.Pokhodenko, N.Guba, A.Kryukov, Functional Materials, 5, 387 (1998). | ||||
19. I.V.Kurdyukova, A.A.Ishchenko, Rus. Chem. Rev., 81, 258 (2012). https://doi.org/10.1070/RC2012v081n03ABEH004211 |
||||
20. I.V.Kurdyukova, N.A.Derevyanko, A.A.Ishchenko et al., Rus. Chem. Bull., 61, 287 (2012). https://doi.org/10.1007/s11172-012-0040-7 |
||||
21. I.M.Kobasa, I.V.Kondratyeva, Y.I.Gnatyuk, Theoret. Exp. Chem., 44, 42 (2008). https://doi.org/10.1007/s11237-008-9003-3 |
||||
22. N.B.Husiak, I.M.Kobasa, S.S.Kurek, Funct. Mater. Lett., 7, 1450030 (2014). https://doi.org/10.1142/S1793604714500301 |
||||
23. Ya.S.Mazurkevich, I.M.Kobasa, Inorg. Mat., 38, 522 (2002). https://doi.org/10.1023/A:1015487425528 |
||||
24. N.A.Davidenko, A.A.Ishchenko, Theor. Experim. Chem., 38, 88 (2002). https://doi.org/10.1023/A:1016088000862 |
||||
25. A.A.Ishchenko, I.L.Mushkalo, N.A.Derevyanko, J. Inform. Record. Mater., 17, 39 (1989). | ||||
26. A.A.Ishchenko, Pure Appl. Chem., 80, 1525 (2008). https://doi.org/10.1351/pac200880071525 |
||||
27. A.I.Kiprianov, Color and Structure of Cyanine Dyes, Naukova Dumka, Kiev (1979). | ||||
28. M.Gratzel (eds.), Energy Resources Through Photochemistry and Catalysis, Academic Press, New York (1983). | ||||
29. P.V.Kamat, Chem. Rev., 93, 276 (1993). https://doi.org/10.1021/cr00017a013 |
||||
30. M.Salkauskas, Chemical Metallization of Plastics, Nauka, Leningrad (1967) [in Russian]. | ||||
31. F.E.Osterloh, Chem. Mater., 20, 35 (2008). https://doi.org/10.1021/cm7024203 |
||||
32. A.I.Krykov, A.L.Stroyuk, S.Ya.Kuchmiy, V.D,Pohodenko, Nanophotocatalysis, Academperiodika, Kiev (2013). | ||||
33. A.A.Ishchenko, Theor. Exper. Chem. 34, 191 (1998). https://doi.org/10.1007/BF02523249 |
||||
34. A.V.Kulinich, N.A.Derevyanko, A.A.Ishchenko et al., Dyes Pigments, 161, 24 (2019). https://doi.org/10.1016/j.dyepig.2018.09.031 |
||||
35. I.V.Kurdyukova, A.A.Ishchenko, D.D.Mysyk, Dyes Pigments, 142, 201 (2017). https://doi.org/10.1016/j.dyepig.2017.03.039 |
||||
36. B.O'regan, M.Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0 |
||||
37. N.Ibrayev, E.Seliverstova, N.Nuraje, A.Ishchenko, Mater. Sci. Semicond. Proces. 31, 358 (2015). https://doi.org/10.1016/j.mssp.2014.12.006 |
||||