Funct. Mater. 2021; 28 (2): 245-251.

doi:https://doi.org/10.15407/fm28.02.245

Electrical properties of photosensitive n-SnS2/p-InSe heterostructures fabricated by spray pyrolysis

I.G.Orletskii1, I.G.Tkachuk2, Z.D.Kovalyuk2, P.D.Maryanchuk1, V.I.Ivanov2

1Y.Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., 58012 Chernivtsi, Ukraine
2I.Frantsevich Institute for Problems of Materials Science, Chernivtsi Branch, National Academy of Sciences of Ukraine, 5 I.Vilde Str., 58001 Chernivtsi, Ukraine

Abstract: 

The conditions for the fabrication of photosensitive anisotypic n-SnS2/p-InSe heterojunctions by the method of spray pyrolysis of thin films on crystalline p-lnSe substrates are studied. On the basis of analysis of temperature dependences of the forward and reverse I-V characteristics, the energy parameters of the heterojunction and the mechanisms of current generation in the heterostructure are calculated. A model for determining the height of the energy barrier in the structures with high resistance of the base region is proposed. The profile of the energy diagram of the heterostructure is drawn, which agrees well with the experimentally observed electro-physical phenomena. The processes of photocurrent generation in the heterostructure are analyzed.

Keywords: 
heterostructures, photosensitivity, photocurrent, spray pyrolysis, thin films, indium selenide, tin (IV) sulfide.
References: 
1. Y.Huang, E.Sutter, J.T.Sadowski et al., ACS Nano, 8, 10743 (2014).
https://doi.org/10.1021/nn504481r
 
2. A.Sanchez-Juarez, A.Tiburcio-Silver, A.Ortiz, Thin Sol. Films, 480, 452 (2005).
https://doi.org/10.1016/j.tsf.2004.11.012
 
3. A.Degrauw, R.Armstrong, A.A.Rahman et al., Mater. Res. Express, 4, 094002 (2017).
https://doi.org/10.1088/2053-1591/aa8a37
 
4. H.Chen, M.Gu, X.Pu et al., Mater. Res. Express, 3, 065002 (2016).
https://doi.org/10.1088/2053-1591/3/6/065002
 
5. G.M.Kumar, F.Xiao, P.Ilanchezhiyan et al., RSC Adv., 6, 99631 (2016).
https://doi.org/10.1039/C6RA20491K
 
6. M.R.Fadavieslam, J. of Mater. Sci.:Mater. in Electron., 28, 2392 (2017).
https://doi.org/10.1007/s10854-016-5809-2
 
7. T.Ricica, L.Strizik, L.Dostal et al., Appl. Org. Chem., 29, 176 (2015).
https://doi.org/10.1002/aoc.3267
 
8. S.Gedi, V.R.Minnam Reddy, B.Pejjai et al., Ceramics International., 43, 3713 (2017).
https://doi.org/10.1016/j.ceramint.2016.11.219
 
9. I.G.Orletskii, P.D.Mar'yanchuk, E.V.Maistruk et al., Fiz. Tverd. Tela, 58, 39 (2016).
https://doi.org/10.1134/S1063783416010224
 
10. I.G.Orletskii, M.N.Solovan, F.Pinna et al., Fiz. Tverd. Tela, 59, 783 (2017).
https://doi.org/10.1134/S1063783417040163
 
11. A.Segura, J.P.Guesdon, J.M.Besson, A. Chevy. Rev. Phys. Appl., 14, 253 (1979).
https://doi.org/10.1051/rphysap:01979001401025300
 
12. V.A.Khandozhko, Z.R.Kudrynskyi, Z.D.Kovalyuk, Fiz. Tekh. Poluprovodn., 48, 564 (2014).
https://doi.org/10.1134/S1063782614040149
 
13. A.Segura, J.P.Guesdon, J.M.Besson, A.Chevy, J. Appl. Phys., 54, 876 (1983).
https://doi.org/10.1063/1.332050
 
14. I.G.Orletsky, M.I.Ilashchuk, V.V.Brus et al., Fiz. Tekh. Poluprovodn., 50, 339 (2016).
https://doi.org/10.1134/S1063782616030167
 
15. Z.R.Kudrynskyi, Z.D.Kovalyuk, V.M.Katerynchuk et al., Acta Phys. Pol. A, 124, 720 (2013).
https://doi.org/10.12693/APhysPolA.124.720
 
16. V.N.Katerynchuk, Z.R.Kudrynskyi, V.V.Khomyak et al., Fiz. Tekh. Poluprovodn., 47, 935 (2013).
https://doi.org/10.1134/S1063782613070099
 
17. I.G.Tkachuk, I.G.Orletsky, Z.D.Kovalyuk, P.D.Marianchuk, Functional Materials, 25, 463 (2018).
https://doi.org/10.15407/fm25.03.463
 
18. V.N.Katerinchuk, M.Z.Kovalyuk, J. Adv. Mater., 4, 40 (1997).
 
19. M.A.Lampert, P.Mark, Current Injection in Solids, Academic Press, New York (1970).
 
20. A.G.Milnes, D.L.Feucht, Heterojunctions and Metal-semiconductor Junctions, Academic Press, New York (1972).
https://doi.org/10.1016/B978-0-12-498050-1.50007-6
 
21. L.A.Burton, D.Colombara, R.D.Abellon et al., Chem. Mater., 25, 4908 (2013).
https://doi.org/10.1021/cm403046m
 
22. G.W.Mudd, S.A.Svatek, L.Hague et al., Adv. Mater., 27, 3760 (2015).
https://doi.org/10.1002/adma.201500889
 
23. F.Yan, L.Zhao, A.Patane et al., Nanotechnology, 28, 02534 (2017).
https://doi.org/10.1088/1361-6528/aa749e
 
24. M.K.L.Man, A.Margiolakis, S.Deckoff-Jones et al., Nat. Nanotech., 12, 36 (2016).
https://doi.org/10.1038/nnano.2016.183
 
25. S.E.Al Garni, O.A.Omareye, A.F.Qasrawi, Optik, 144, 340 (2017).
https://doi.org/10.1016/j.ijleo.2017.06.109
 
26. I.G.Orletskii, P.D.Maryanchuk, E.V.Maistruk et al., Neorg. Mater., 52, 914 (2016).
https://doi.org/10.1134/S0020168516080148
 
27. Z.D.Kovalyuk, O.N.Sydor, V.N.Katerinchuk, V.V.Netyaga, Fiz. Tekh. Poluprovodn., 41, 1074 (2007).
https://doi.org/10.1134/S1063782607090096
 
28. I.G.Orletskyi, M.I.Ilashchuk, E.V.Maistruk et al., Ukr. J. Phys., 64, 161 (2019).
https://doi.org/10.15407/ujpe64.2.164
 
29. R.Vaidyanathan, J.L.Stickney, S.M.Cox et al., J. Electroanal. Chem., 559, 55 (2003).
https://doi.org/10.1016/S0022-0728(03)00053-6
 
30. S.B.Bansode, R.S.Kapadnis, A.S.Ansari et al., J. Mater. Sci.:Mater. Electron., 27, 12351 (2016).
https://doi.org/10.1007/s10854-016-5145-6
 
31. Z.Zheng, J.Yao, G.Yang, ACS Appl. Mater. Interfaces, 9, 7288 (2017).
https://doi.org/10.1021/acsami.6b16323
 
32. S.M.Sze, K.N.Kwok, Physics of Semiconductor Devices, Wiley, Durham, North Carolina (2006).
 
33. B.L.Sharma, R.K.Purohit, Semiconductor Heterojunctions, Pergamon Press, New York (1974).
https://doi.org/10.1016/B978-0-08-017747-2.50005-8
 
34. M.A.Mehrabova, R.S.Madatov, Fiz. Tekh. Poluprovodn., 45, 1031 (2011).
https://doi.org/10.1134/S1063782611080136
 
35. I.G.Orletskyi, M.M.Solovan, V.V.Brus et al., J. Phys. Chem. Solids, 100, 154 (2017).
https://doi.org/10.1016/j.jpcs.2016.09.015
 
36. S.G.Patil, R.H.Tredgold, J. Phys. D: Appl. Phys., 4, 718 (1971).
https://doi.org/10.1088/0022-3727/4/5/312
 
37. A.Voznyi, V.Kosyak, A.Opanasyuk et al., Mater. Chem. Phys., 173, 52 (2016).
https://doi.org/10.1016/j.matchemphys.2016.01.036

Current number: