Funct. Mater. 2021; 28 (2): 245-251.
Electrical properties of photosensitive n-SnS2/p-InSe heterostructures fabricated by spray pyrolysis
1Y.Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., 58012 Chernivtsi, Ukraine
2I.Frantsevich Institute for Problems of Materials Science, Chernivtsi Branch, National Academy of Sciences of Ukraine, 5 I.Vilde Str., 58001 Chernivtsi, Ukraine
The conditions for the fabrication of photosensitive anisotypic n-SnS2/p-InSe heterojunctions by the method of spray pyrolysis of thin films on crystalline p-lnSe substrates are studied. On the basis of analysis of temperature dependences of the forward and reverse I-V characteristics, the energy parameters of the heterojunction and the mechanisms of current generation in the heterostructure are calculated. A model for determining the height of the energy barrier in the structures with high resistance of the base region is proposed. The profile of the energy diagram of the heterostructure is drawn, which agrees well with the experimentally observed electro-physical phenomena. The processes of photocurrent generation in the heterostructure are analyzed.
1. Y.Huang, E.Sutter, J.T.Sadowski et al., ACS Nano, 8, 10743 (2014). https://doi.org/10.1021/nn504481r |
||||
2. A.Sanchez-Juarez, A.Tiburcio-Silver, A.Ortiz, Thin Sol. Films, 480, 452 (2005). https://doi.org/10.1016/j.tsf.2004.11.012 |
||||
3. A.Degrauw, R.Armstrong, A.A.Rahman et al., Mater. Res. Express, 4, 094002 (2017). https://doi.org/10.1088/2053-1591/aa8a37 |
||||
4. H.Chen, M.Gu, X.Pu et al., Mater. Res. Express, 3, 065002 (2016). https://doi.org/10.1088/2053-1591/3/6/065002 |
||||
5. G.M.Kumar, F.Xiao, P.Ilanchezhiyan et al., RSC Adv., 6, 99631 (2016). https://doi.org/10.1039/C6RA20491K |
||||
6. M.R.Fadavieslam, J. of Mater. Sci.:Mater. in Electron., 28, 2392 (2017). https://doi.org/10.1007/s10854-016-5809-2 |
||||
7. T.Ricica, L.Strizik, L.Dostal et al., Appl. Org. Chem., 29, 176 (2015). https://doi.org/10.1002/aoc.3267 |
||||
8. S.Gedi, V.R.Minnam Reddy, B.Pejjai et al., Ceramics International., 43, 3713 (2017). https://doi.org/10.1016/j.ceramint.2016.11.219 |
||||
9. I.G.Orletskii, P.D.Mar'yanchuk, E.V.Maistruk et al., Fiz. Tverd. Tela, 58, 39 (2016). https://doi.org/10.1134/S1063783416010224 |
||||
10. I.G.Orletskii, M.N.Solovan, F.Pinna et al., Fiz. Tverd. Tela, 59, 783 (2017). https://doi.org/10.1134/S1063783417040163 |
||||
11. A.Segura, J.P.Guesdon, J.M.Besson, A. Chevy. Rev. Phys. Appl., 14, 253 (1979). https://doi.org/10.1051/rphysap:01979001401025300 |
||||
12. V.A.Khandozhko, Z.R.Kudrynskyi, Z.D.Kovalyuk, Fiz. Tekh. Poluprovodn., 48, 564 (2014). https://doi.org/10.1134/S1063782614040149 |
||||
13. A.Segura, J.P.Guesdon, J.M.Besson, A.Chevy, J. Appl. Phys., 54, 876 (1983). https://doi.org/10.1063/1.332050 |
||||
14. I.G.Orletsky, M.I.Ilashchuk, V.V.Brus et al., Fiz. Tekh. Poluprovodn., 50, 339 (2016). https://doi.org/10.1134/S1063782616030167 |
||||
15. Z.R.Kudrynskyi, Z.D.Kovalyuk, V.M.Katerynchuk et al., Acta Phys. Pol. A, 124, 720 (2013). https://doi.org/10.12693/APhysPolA.124.720 |
||||
16. V.N.Katerynchuk, Z.R.Kudrynskyi, V.V.Khomyak et al., Fiz. Tekh. Poluprovodn., 47, 935 (2013). https://doi.org/10.1134/S1063782613070099 |
||||
17. I.G.Tkachuk, I.G.Orletsky, Z.D.Kovalyuk, P.D.Marianchuk, Functional Materials, 25, 463 (2018). https://doi.org/10.15407/fm25.03.463 |
||||
18. V.N.Katerinchuk, M.Z.Kovalyuk, J. Adv. Mater., 4, 40 (1997). | ||||
19. M.A.Lampert, P.Mark, Current Injection in Solids, Academic Press, New York (1970). | ||||
20. A.G.Milnes, D.L.Feucht, Heterojunctions and Metal-semiconductor Junctions, Academic Press, New York (1972). https://doi.org/10.1016/B978-0-12-498050-1.50007-6 |
||||
21. L.A.Burton, D.Colombara, R.D.Abellon et al., Chem. Mater., 25, 4908 (2013). https://doi.org/10.1021/cm403046m |
||||
22. G.W.Mudd, S.A.Svatek, L.Hague et al., Adv. Mater., 27, 3760 (2015). https://doi.org/10.1002/adma.201500889 |
||||
23. F.Yan, L.Zhao, A.Patane et al., Nanotechnology, 28, 02534 (2017). https://doi.org/10.1088/1361-6528/aa749e |
||||
24. M.K.L.Man, A.Margiolakis, S.Deckoff-Jones et al., Nat. Nanotech., 12, 36 (2016). https://doi.org/10.1038/nnano.2016.183 |
||||
25. S.E.Al Garni, O.A.Omareye, A.F.Qasrawi, Optik, 144, 340 (2017). https://doi.org/10.1016/j.ijleo.2017.06.109 |
||||
26. I.G.Orletskii, P.D.Maryanchuk, E.V.Maistruk et al., Neorg. Mater., 52, 914 (2016). https://doi.org/10.1134/S0020168516080148 |
||||
27. Z.D.Kovalyuk, O.N.Sydor, V.N.Katerinchuk, V.V.Netyaga, Fiz. Tekh. Poluprovodn., 41, 1074 (2007). https://doi.org/10.1134/S1063782607090096 |
||||
28. I.G.Orletskyi, M.I.Ilashchuk, E.V.Maistruk et al., Ukr. J. Phys., 64, 161 (2019). https://doi.org/10.15407/ujpe64.2.164 |
||||
29. R.Vaidyanathan, J.L.Stickney, S.M.Cox et al., J. Electroanal. Chem., 559, 55 (2003). https://doi.org/10.1016/S0022-0728(03)00053-6 |
||||
30. S.B.Bansode, R.S.Kapadnis, A.S.Ansari et al., J. Mater. Sci.:Mater. Electron., 27, 12351 (2016). https://doi.org/10.1007/s10854-016-5145-6 |
||||
31. Z.Zheng, J.Yao, G.Yang, ACS Appl. Mater. Interfaces, 9, 7288 (2017). https://doi.org/10.1021/acsami.6b16323 |
||||
32. S.M.Sze, K.N.Kwok, Physics of Semiconductor Devices, Wiley, Durham, North Carolina (2006). | ||||
33. B.L.Sharma, R.K.Purohit, Semiconductor Heterojunctions, Pergamon Press, New York (1974). https://doi.org/10.1016/B978-0-08-017747-2.50005-8 |
||||
34. M.A.Mehrabova, R.S.Madatov, Fiz. Tekh. Poluprovodn., 45, 1031 (2011). https://doi.org/10.1134/S1063782611080136 |
||||
35. I.G.Orletskyi, M.M.Solovan, V.V.Brus et al., J. Phys. Chem. Solids, 100, 154 (2017). https://doi.org/10.1016/j.jpcs.2016.09.015 |
||||
36. S.G.Patil, R.H.Tredgold, J. Phys. D: Appl. Phys., 4, 718 (1971). https://doi.org/10.1088/0022-3727/4/5/312 |
||||
37. A.Voznyi, V.Kosyak, A.Opanasyuk et al., Mater. Chem. Phys., 173, 52 (2016). https://doi.org/10.1016/j.matchemphys.2016.01.036 |