Funct. Mater. 2021; 28 (2): 252-258.
Nitrogen-iron co-doped titania films as solar light sensitive photocatalysts
A.Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
Iron and nitrogen-iron co-doped titania films (non-porous and mesoporous) on glass substrates were obtained using a sol-gel method via different synthesis routes. The photocatalytic degradation of anthropogenic pollutant tetracycline hydrochloride over synthesized films was studied. It is shown that the photocatalytic response of the films is sharply depended on the synthesis procedure and calcination temperature. The non-porous three layered iron-doped and nitrogen-iron co-doped titania treated at 450°C exhibited the highest photocatalytic activity under UV and simulated solar light, respectively. The crystallization of iron titanates accompanied by the formation of new active sites led the high adsorbability of TC molecules onto the surface that, in turns, stimulate the high conversion of tetracycline hydrohloride.
1. D.Ihnatiuk et al., Catalysts, 10, 1 (2020). https://doi.org/10.3390/catal10091074 |
||||
2. V.Etacheri et al., J. Photochem. Photobiol. C, 25, 1 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.003 |
||||
3. L.M.Ahmed et al., Int. J. Photoenergy, Article ID (2014). https://doi.org/10.1155/2014/503516 |
||||
4. R.B.S.Neubert et al., Mater. Chem., 4, 3127 (2016). https://doi.org/10.1039/C5TA07036H |
||||
5. M.Kitano, M.Matsuoka, M.Ueshima, M.Anpo, Appl. Catal. A Gen., 325, 1 (2007). https://doi.org/10.1016/j.apcata.2007.03.013 |
||||
6. N.Aman, T.Mishra, K.Sahu, J.P.Tiwari, J. Mater. Chem., 20, 10876 (2010). https://doi.org/10.1039/c0jm01342k |
||||
7. O.Linnik et al., Dig. J. Nanomater. Biostruct., 7, 1343 (2012). | ||||
8. O. Linnik et al., Vacuum, 114, 166 (2015). https://doi.org/10.1016/j.vacuum.2014.12.011 |
||||
9. R.A.Lucky, P.A.Charpentier, Appl. Catal. B Environ., 96, 516 (2010). https://doi.org/10.1016/j.apcatb.2010.03.013 |
||||
10. O.Linnik, N.Chorna, N.Smirnova, Nanoscale Res. Lett., 12 (2017). https://doi.org/10.1186/s11671-017-2027-7 |
||||
11. O.Linnik et al., Appl. Nanosci., 10, 2569 (2020). https://doi.org/10.1007/s13204-020-01309-x |
||||
12. K.S.Rane et al., J. Solid State Chem., 179, 3033 (2006). https://doi.org/10.1016/j.jssc.2006.05.033 |
||||
13. D.Dolat et al., Chem. Eng. J., 225, 358 (2013). https://doi.org/10.1016/j.cej.2013.03.047 |
||||
14. K.Zhang, X.Wang, X.Guo, J. Nanopart. Res., 16, 2246 (2014). https://doi.org/10.1007/s11051-014-2246-0 |
||||
15. T.P.Van Boeckel et al., Proc. Nat. Acad. Sci. USA, 112, 5649 (2015). https://doi.org/10.1073/pnas.1503141112 |
||||
16. K.Kummerer, A.Al-ahmad, V.Mersch-Sundermann, Chemosphere, 40, 701 (2000). https://doi.org/10.1016/S0045-6535(99)00439-7 |
||||
17. O.Linnik et al., J. Adv. Oxid. Technol., 12, 265 (2009). | ||||
18. O.Linnik et al., Mater. Chem. Phys., 142, 1 (2013). https://doi.org/10.1016/j.matchemphys.2013.07.023 |
||||
19. Y.Yalcin, M.Kilic, Z.Cinar, Appl. Catal. B Environ., 99, 469 (2010). https://doi.org/10.1016/j.apcatb.2010.05.013 |
||||
20. N.Chorna et al., Appl. Surf. Sci., 473 (2019). https://doi.org/10.1016/j.apsusc.2018.12.154 |
||||
21. O.Rusina et al., Chem. A Eur. J., 9, 561 (2003). https://doi.org/10.1002/chem.200390059 |
||||
22. D.Dolat et al., Appl. Catal. B Environ., 162, 310 (2015). https://doi.org/10.1016/j.apcatb.2014.07.001 |
||||