Funct. Mater. 2021; 28 (2): 252-258.

doi:https://doi.org/10.15407/fm28.02.252

Nitrogen-iron co-doped titania films as solar light sensitive photocatalysts

O.Linnik, N.Smirnova, I.Laguta, A.Eremenko

A.Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine

Abstract: 

Iron and nitrogen-iron co-doped titania films (non-porous and mesoporous) on glass substrates were obtained using a sol-gel method via different synthesis routes. The photocatalytic degradation of anthropogenic pollutant tetracycline hydrochloride over synthesized films was studied. It is shown that the photocatalytic response of the films is sharply depended on the synthesis procedure and calcination temperature. The non-porous three layered iron-doped and nitrogen-iron co-doped titania treated at 450°C exhibited the highest photocatalytic activity under UV and simulated solar light, respectively. The crystallization of iron titanates accompanied by the formation of new active sites led the high adsorbability of TC molecules onto the surface that, in turns, stimulate the high conversion of tetracycline hydrohloride.

Keywords: 
photocatalysis, iron-doped titania, nitrogen-iron co-doped titania films, tetracycline hydrochloride degradation.
References: 
1. D.Ihnatiuk et al., Catalysts, 10, 1 (2020).
https://doi.org/10.3390/catal10091074
 
2. V.Etacheri et al., J. Photochem. Photobiol. C, 25, 1 (2015).
https://doi.org/10.1016/j.jphotochemrev.2015.08.003
 
3. L.M.Ahmed et al., Int. J. Photoenergy, Article ID (2014).
https://doi.org/10.1155/2014/503516
 
4. R.B.S.Neubert et al., Mater. Chem., 4, 3127 (2016).
https://doi.org/10.1039/C5TA07036H
 
5. M.Kitano, M.Matsuoka, M.Ueshima, M.Anpo, Appl. Catal. A Gen., 325, 1 (2007).
https://doi.org/10.1016/j.apcata.2007.03.013
 
6. N.Aman, T.Mishra, K.Sahu, J.P.Tiwari, J. Mater. Chem., 20, 10876 (2010).
https://doi.org/10.1039/c0jm01342k
 
7. O.Linnik et al., Dig. J. Nanomater. Biostruct., 7, 1343 (2012).
 
8. O. Linnik et al., Vacuum, 114, 166 (2015).
https://doi.org/10.1016/j.vacuum.2014.12.011
 
9. R.A.Lucky, P.A.Charpentier, Appl. Catal. B Environ., 96, 516 (2010).
https://doi.org/10.1016/j.apcatb.2010.03.013
 
10. O.Linnik, N.Chorna, N.Smirnova, Nanoscale Res. Lett., 12 (2017).
https://doi.org/10.1186/s11671-017-2027-7
 
11. O.Linnik et al., Appl. Nanosci., 10, 2569 (2020).
https://doi.org/10.1007/s13204-020-01309-x
 
12. K.S.Rane et al., J. Solid State Chem., 179, 3033 (2006).
https://doi.org/10.1016/j.jssc.2006.05.033
 
13. D.Dolat et al., Chem. Eng. J., 225, 358 (2013).
https://doi.org/10.1016/j.cej.2013.03.047
 
14. K.Zhang, X.Wang, X.Guo, J. Nanopart. Res., 16, 2246 (2014).
https://doi.org/10.1007/s11051-014-2246-0
 
15. T.P.Van Boeckel et al., Proc. Nat. Acad. Sci. USA, 112, 5649 (2015).
https://doi.org/10.1073/pnas.1503141112
 
16. K.Kummerer, A.Al-ahmad, V.Mersch-Sundermann, Chemosphere, 40, 701 (2000).
https://doi.org/10.1016/S0045-6535(99)00439-7
 
17. O.Linnik et al., J. Adv. Oxid. Technol., 12, 265 (2009).
 
18. O.Linnik et al., Mater. Chem. Phys., 142, 1 (2013).
https://doi.org/10.1016/j.matchemphys.2013.07.023
 
19. Y.Yalcin, M.Kilic, Z.Cinar, Appl. Catal. B Environ., 99, 469 (2010).
https://doi.org/10.1016/j.apcatb.2010.05.013
 
20. N.Chorna et al., Appl. Surf. Sci., 473 (2019).
https://doi.org/10.1016/j.apsusc.2018.12.154
 
21. O.Rusina et al., Chem. A Eur. J., 9, 561 (2003).
https://doi.org/10.1002/chem.200390059
 
22. D.Dolat et al., Appl. Catal. B Environ., 162, 310 (2015).
https://doi.org/10.1016/j.apcatb.2014.07.001
 

Current number: