Funct. Mater. 2021; 28 (2): 266-274.
Transfer processes in an equiatomic FeNi composite obtained by electroconsolidation
1V. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine 2Ukrainian State University of Railway Transport, 7 Feierbakh Sq., 61050 Kharkiv, Ukraine 3Centre of Low Temperature Physics, Faculty of Science, P. Safarik University, 9 Park Angelinum, 04154 Kosice, Slovakia
The paper presents studying by resistive and energy-dispersive methods the transfer processes in a binary Fe-Ni system obtained by the method of electroconsolidation (SPS technology). Well-separated regions of almost pure iron and nickel were found. The concentration dependence of interdiffusion in the composite under study passes through a maximum at a nickel concentration of ~ 70 at. %. It is shown that the value of the interdiffusion coefficient of the electroconsolidated Fe-Ni composite is significantly higher than that of an alloy of similar composition, which is probably the result of the effect of the SPS technology, as well as an increase in the contribution of intergranular diffusion. It was found that the electrical and thermal conductivity of an electroconsolidated sample is significantly higher than that of samples of the same composition obtained by melting. It was found that the temperature dependences of the resistivity of the electroconsolidated sample in the investigated range of 5-300 K are due to the scattering of electrons by defects and phonons, and the scattering of electrons by phonons can be approximated with a high accuracy by the Bloch-Gruneisen-Wilson relation.
1. E.A.Perigo, B.Weidenfeller, P.Kollar et al., Appl. Phys. Rev., 5, 031301 (2018). https://doi.org/10.1063/1.5027045 |
||||
2. O.V.Dobrovolskiy, M.Huth, V.A.Shklovskij et al., Sci. Rep., 7, 13740 (2017). https://doi.org/10.1038/s41598-017-14232-z |
||||
3. A.L.Solovjov, E.V.Petrenko, L.V.Omelchenko et al., Sci. Rep., 9, 9274 (2019). https://doi.org/10.1038/s41598-019-45286-w |
||||
4. R.V.Vovk, A.L.Solovyov, Low Temp. Phys., 44, 81 (2018). https://doi.org/10.1063/1.5020905 |
||||
5. N.Kuganathan, A.Kordatos, M.E.Fitzpatrick et al., Solid State Ionics, 327, 93 (2018). https://doi.org/10.1016/j.ssi.2018.10.030 |
||||
6. R.V.Vovk, G.Ya.Khadzhai, T.A.Prikhna et al., J. Mater. Sci.:Mater. El., 29, 11478 (2018). https://doi.org/10.1007/s10854-018-9242-6 |
||||
7. O.V.Dobrovolskiy, V.M.Bevz, M.Yu.Mikhailov et al., Nat. Commun., 9, 4927 (2018). https://doi.org/10.1038/s41467-018-07256-0 |
||||
8. A.L.Solovjov, L.V.Omelchenko, E.V.Petrenko et al., Sci. Rep., 9, 20424 (2019). https://doi.org/10.1038/s41598-019-55959-1 |
||||
9. M.A.Hadi, R.V.Vovk, A.Chroneos, J. Mater. Sci.:Mater. El., 27, 11925 (2016). https://doi.org/10.1007/s10854-016-5338-z |
||||
10. N.Kuganathan, P.Iyngaran, R.Vovk et al., Sci. Rep., 9, 4394 (2019). https://doi.org/10.1038/s41598-019-40878-y |
||||
11. A.Li, Z.Zhu, Y.Liu, J.Hu, Mater. Res. Bull., 127, 110845 (2020). https://doi.org/10.1016/j.materresbull.2020.110845 |
||||
12. T.Nagayama, T.Yamamoto, T.Nakamura, SID Symp. Digest Techn. Papers, 48, 527 (2017). https://doi.org/10.1002/sdtp.11692 |
||||
13. J.Liu, H.Liu, X.Tian et al., J. Alloy. Comp., 822, 153708 (2020). https://doi.org/10.1016/j.jallcom.2020.153708 |
||||
14. T.Chen, J.Yu, C.Ma et al., Chemosphere, 248, 125964 (2020). https://doi.org/10.1016/j.chemosphere.2020.125964 |
||||
15. N.Cai, H.Yang, X.Zhang et al., Waste Manage., 109, 119 (2020). https://doi.org/10.1016/j.wasman.2020.05.003 |
||||
16. Z.Zhang, L.Cong, Z.Yu et al., Mater. Today Ener., 16, 100387 (2020). https://doi.org/10.1016/j.mtener.2020.100387 |
||||
17. Y.Wu, Y.Yi, Z.Sun et al., Chem. Eng. J., 390, 124515 (2020). https://doi.org/10.1016/j.cej.2020.124515 |
||||
18. A.Fan, C.Qin, X.Zhang et al., J. Mater. Chem. A, 7, 24347 (2019). https://doi.org/10.1039/C9TA08594G |
||||
19. G.Zhang, G.Wang, H.Liu et al., Nano Energy, 43, 359 (2018). https://doi.org/10.1016/j.nanoen.2017.11.035 |
||||
20. L.Ji, L.Zhang, X.Yang et al., Dalton T., 49, 4146 (2020). https://doi.org/10.1039/D0DT00230E |
||||
21. S.Gao, H.Wang, X.Wang et al., J. Alloy. Comp., 154631 (2020). https://doi.org/10.1016/j.jallcom.2020.154631 |
||||
22. S.Sarkar, A.Biswas, T.Purkait et al., Inorg. Chem., 59, 5194 (2020). https://doi.org/10.1021/acs.inorgchem.0c00446 |
||||
23. X.Zhu, D.Zhang, C.J.Chen et al., Nano Energy, 71, 104597 (2020). https://doi.org/10.1016/j.nanoen.2020.104597 |
||||
24. S.Goto, H.Kura, E.Watanabe et al., Sci. Rep., 7, 1 (2017). https://doi.org/10.1038/s41598-016-0028-x |
||||
25. V.L.Kurichenko, D.Y.Karpenkov, A.Y.Karpenkov et al., J. Magn. Magn. Mater., 470, 33 (2019). https://doi.org/10.1016/j.jmmm.2017.11.040 |
||||
26. F.Bernard, S.Le Gallet, N.Spinassou et al., Sci. Sinter., 36, 155 (2004). https://doi.org/10.2298/SOS0403155B |
||||
27. V.V.Skorokhod, A.V.Ragulya, Poroshkovaya Metallurgiya, 3-4, 3 (1994). | ||||
28. D.L.Bourell, J.R.Groza, Powder Metallurgy. ASM Handbook, 7, 504 (1998). | ||||
29. Ya.E.Geguzin, Sintering Physics, 2-nd ed., Nauka, Moscow (1984) [in Russian]. | ||||
30. V.Y.Kodash, J.R.Groza, K.C.Cho et al., Mat. Sci. Eng. A, 385, 367 (2004). https://doi.org/10.1016/S0921-5093(04)00926-8 |
||||
31. E.Aslan, N.Camuscu, B.Birgoren, Mater. Design. 28, 1618 (2007). https://doi.org/10.1016/j.matdes.2006.02.006 |
||||
32. B.S.Bokshtejn, Diffusion in Metals, Metallurgiya, Moscow (1978) [in Russian]. | ||||
33. A.Kohn, J.Levasseur, J.Philibert et al., Acta Met., 18, 163 (1970). https://doi.org/10.1016/0001-6160(70)90080-5 |
||||
34. Yu.E.Ugaste, A.A.Kodentsov, F.Van Loo, The Phys. Metals. Metallog., 88, 88 (1999). | ||||
35. M.Badia, Interdiffusion of Fe and the Transition Metals, Ph.D. Thesis, Univ. Nancy, France (1969). | ||||
36. J.I.Goldstein, R.E.Hanneman, R.E.Ogilvie, Trans. Metall. Soc. AMIEV, 233, 812 (1965). | ||||
37. R.Berman, Thermal Conduction of Solids, Clarendon Press, Oxford (1976). | ||||
38. C.Y.Ho et al., J. Phys. Chem. Ref. Data, 12, 183 (1983). https://doi.org/10.1063/1.555684 |
||||
39. C.Y.Ho, M.W.Ackerman, K.Y.Wu et al., J. Phys. Chem. Ref. Data, 7, 959 (1978). https://doi.org/10.1063/1.555583 |
||||
40. A.M.Ermolaev, B.A.Merisov, V.I.Khotkevich, Fizika Metalov i Metallov., 24, 1104 (1967). | ||||
41. B.A.Merisov, G.Ya.Khadzhaj, P.N.V'yugov et al., Metallofiz. Noveishie Tekhnol., 33, 301 (2011). | ||||
42. V.A.Pervakov, Low-temperature Thermal Conductivity of Metals with Defects, Gos. Spez. .Izd. Osnova, Kharkov (1993) [in Russian]. | ||||
43. Yu.Kagan, A.P.Zhernov, Zh. Eksper. Teor. Fiziki, 50, 1107 (1966) | ||||
44. A.M.Ermolaev, FMM, 23, 813 (1967). https://doi.org/10.2307/2528431 |
||||
45. K.Jin, B.Sales, G.Stocks et al., Sci. Rep., 6, 20159 (2016). https://doi.org/10.1038/srep20159 |
||||
46. P.L.Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge University Press (1987). https://doi.org/10.1017/CBO9780511600289 |
||||
47. Z.Hashin, S.Shtrikman, J. Appl. Phys., 33, 3125 (1962). https://doi.org/10.1063/1.1728579 |
||||
48. A.H.Wilson, Proc. Roy. Soc. A, 167, 580 (1938). https://doi.org/10.1098/rspa.1938.0156 |
||||
49. L.Colquitt, J. App. Phys., 36, 8 (1965). https://doi.org/10.1063/1.1714510 |
||||
50. G.W.Webb, Phys. Rev., 181, 1127 (1969). https://doi.org/10.1103/PhysRev.181.1127 |
||||
51. S.Banerjee, A.K.Raychaudhuri, Phys. Rev. B, 50, 8195 (1994). https://doi.org/10.1103/PhysRevB.50.8195 |
||||
52. Y.Kao et al., J. Alloy. Comp., 509, 1607 (2011). https://doi.org/10.1016/j.jallcom.2010.10.210 |
||||
53. O.A.Gavrenko, B.A.Merisov, G.Ya.Khadzhaj, Met. Phys. Adv. Tech., 15, 1215 (1996). | ||||
54. J.M.Ziman. Electrons and Phonons. The Theory of Transport Phenomena in Solids, Oxford at the Clarendon Press (1960). | ||||
55. N.V.Volkenshtein, V.P.Dyakina, V.E.Startsev, Phys. Stat. Sol. B, 57, 9 (1973). https://doi.org/10.1002/pssb.2220570102 |
||||
56. J.-F.Lin, J.P.Bird, L.Rotkina et al., App. Phys. Lett., 84, 3828 (2004). https://doi.org/10.1063/1.1745108 |
||||
57. S.S.Yeh, J.J.Lin, Jing Xiunian et al., Phys. Rev. B, 72, 024204 (2005). https://doi.org/10.1103/PhysRevB.72.024204 |
||||
58. M.Yu.Reizer, A.V.Sergeev, Zh. Eksper. Teor. Fiziki, 65, 1291 (1987). | ||||
59. Y.Tanji, J. Phys. Soc. Jpn., 30, 133 (1971). https://doi.org/10.1143/JPSJ.30.133 |
||||