Funct. Mater. 2021; 28 (2): 266-274.

doi:https://doi.org/10.15407/fm28.02.266

Transfer processes in an equiatomic FeNi composite obtained by electroconsolidation

G.Ya.Khadzhai1, S.R.Vovk2,3, E.S.Gevorkyan1,2, S.V.Dukarov1, M.V.Kislitsa1, A.Feher3, V.N.Sukhov1, R.V.Vovk1

1V. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine 2Ukrainian State University of Railway Transport, 7 Feierbakh Sq., 61050 Kharkiv, Ukraine 3Centre of Low Temperature Physics, Faculty of Science, P. Safarik University, 9 Park Angelinum, 04154 Kosice, Slovakia

Abstract: 

The paper presents studying by resistive and energy-dispersive methods the transfer processes in a binary Fe-Ni system obtained by the method of electroconsolidation (SPS technology). Well-separated regions of almost pure iron and nickel were found. The concentration dependence of interdiffusion in the composite under study passes through a maximum at a nickel concentration of ~ 70 at. %. It is shown that the value of the interdiffusion coefficient of the electroconsolidated Fe-Ni composite is significantly higher than that of an alloy of similar composition, which is probably the result of the effect of the SPS technology, as well as an increase in the contribution of intergranular diffusion. It was found that the electrical and thermal conductivity of an electroconsolidated sample is significantly higher than that of samples of the same composition obtained by melting. It was found that the temperature dependences of the resistivity of the electroconsolidated sample in the investigated range of 5-300 K are due to the scattering of electrons by defects and phonons, and the scattering of electrons by phonons can be approximated with a high accuracy by the Bloch-Gruneisen-Wilson relation.

Keywords: 
electroconsolidation, interdiffusion, electrical conductivity, thermal conductivity, electrons, phonons, scattering, energy-dispersive methods.
References: 
1. E.A.Perigo, B.Weidenfeller, P.Kollar et al., Appl. Phys. Rev., 5, 031301 (2018).
https://doi.org/10.1063/1.5027045
 
2. O.V.Dobrovolskiy, M.Huth, V.A.Shklovskij et al., Sci. Rep., 7, 13740 (2017).
https://doi.org/10.1038/s41598-017-14232-z
 
3. A.L.Solovjov, E.V.Petrenko, L.V.Omelchenko et al., Sci. Rep., 9, 9274 (2019).
https://doi.org/10.1038/s41598-019-45286-w
 
4. R.V.Vovk, A.L.Solovyov, Low Temp. Phys., 44, 81 (2018).
https://doi.org/10.1063/1.5020905
 
5. N.Kuganathan, A.Kordatos, M.E.Fitzpatrick et al., Solid State Ionics, 327, 93 (2018).
https://doi.org/10.1016/j.ssi.2018.10.030
 
6. R.V.Vovk, G.Ya.Khadzhai, T.A.Prikhna et al., J. Mater. Sci.:Mater. El., 29, 11478 (2018).
https://doi.org/10.1007/s10854-018-9242-6
 
7. O.V.Dobrovolskiy, V.M.Bevz, M.Yu.Mikhailov et al., Nat. Commun., 9, 4927 (2018).
https://doi.org/10.1038/s41467-018-07256-0
 
8. A.L.Solovjov, L.V.Omelchenko, E.V.Petrenko et al., Sci. Rep., 9, 20424 (2019).
https://doi.org/10.1038/s41598-019-55959-1
 
9. M.A.Hadi, R.V.Vovk, A.Chroneos, J. Mater. Sci.:Mater. El., 27, 11925 (2016).
https://doi.org/10.1007/s10854-016-5338-z
 
10. N.Kuganathan, P.Iyngaran, R.Vovk et al., Sci. Rep., 9, 4394 (2019).
https://doi.org/10.1038/s41598-019-40878-y
 
11. A.Li, Z.Zhu, Y.Liu, J.Hu, Mater. Res. Bull., 127, 110845 (2020).
https://doi.org/10.1016/j.materresbull.2020.110845
 
12. T.Nagayama, T.Yamamoto, T.Nakamura, SID Symp. Digest Techn. Papers, 48, 527 (2017).
https://doi.org/10.1002/sdtp.11692
 
13. J.Liu, H.Liu, X.Tian et al., J. Alloy. Comp., 822, 153708 (2020).
https://doi.org/10.1016/j.jallcom.2020.153708
 
14. T.Chen, J.Yu, C.Ma et al., Chemosphere, 248, 125964 (2020).
https://doi.org/10.1016/j.chemosphere.2020.125964
 
15. N.Cai, H.Yang, X.Zhang et al., Waste Manage., 109, 119 (2020).
https://doi.org/10.1016/j.wasman.2020.05.003
 
16. Z.Zhang, L.Cong, Z.Yu et al., Mater. Today Ener., 16, 100387 (2020).
https://doi.org/10.1016/j.mtener.2020.100387
 
17. Y.Wu, Y.Yi, Z.Sun et al., Chem. Eng. J., 390, 124515 (2020).
https://doi.org/10.1016/j.cej.2020.124515
 
18. A.Fan, C.Qin, X.Zhang et al., J. Mater. Chem. A, 7, 24347 (2019).
https://doi.org/10.1039/C9TA08594G
 
19. G.Zhang, G.Wang, H.Liu et al., Nano Energy, 43, 359 (2018).
https://doi.org/10.1016/j.nanoen.2017.11.035
 
20. L.Ji, L.Zhang, X.Yang et al., Dalton T., 49, 4146 (2020).
https://doi.org/10.1039/D0DT00230E
 
21. S.Gao, H.Wang, X.Wang et al., J. Alloy. Comp., 154631 (2020).
https://doi.org/10.1016/j.jallcom.2020.154631
 
22. S.Sarkar, A.Biswas, T.Purkait et al., Inorg. Chem., 59, 5194 (2020).
https://doi.org/10.1021/acs.inorgchem.0c00446
 
23. X.Zhu, D.Zhang, C.J.Chen et al., Nano Energy, 71, 104597 (2020).
https://doi.org/10.1016/j.nanoen.2020.104597
 
24. S.Goto, H.Kura, E.Watanabe et al., Sci. Rep., 7, 1 (2017).
https://doi.org/10.1038/s41598-016-0028-x
 
25. V.L.Kurichenko, D.Y.Karpenkov, A.Y.Karpenkov et al., J. Magn. Magn. Mater., 470, 33 (2019).
https://doi.org/10.1016/j.jmmm.2017.11.040
 
26. F.Bernard, S.Le Gallet, N.Spinassou et al., Sci. Sinter., 36, 155 (2004).
https://doi.org/10.2298/SOS0403155B
 
27. V.V.Skorokhod, A.V.Ragulya, Poroshkovaya Metallurgiya, 3-4, 3 (1994).
 
28. D.L.Bourell, J.R.Groza, Powder Metallurgy. ASM Handbook, 7, 504 (1998).
 
29. Ya.E.Geguzin, Sintering Physics, 2-nd ed., Nauka, Moscow (1984) [in Russian].
 
30. V.Y.Kodash, J.R.Groza, K.C.Cho et al., Mat. Sci. Eng. A, 385, 367 (2004).
https://doi.org/10.1016/S0921-5093(04)00926-8
 
31. E.Aslan, N.Camuscu, B.Birgoren, Mater. Design. 28, 1618 (2007).
https://doi.org/10.1016/j.matdes.2006.02.006
 
32. B.S.Bokshtejn, Diffusion in Metals, Metallurgiya, Moscow (1978) [in Russian].
 
33. A.Kohn, J.Levasseur, J.Philibert et al., Acta Met., 18, 163 (1970).
https://doi.org/10.1016/0001-6160(70)90080-5
 
34. Yu.E.Ugaste, A.A.Kodentsov, F.Van Loo, The Phys. Metals. Metallog., 88, 88 (1999).
 
35. M.Badia, Interdiffusion of Fe and the Transition Metals, Ph.D. Thesis, Univ. Nancy, France (1969).
 
36. J.I.Goldstein, R.E.Hanneman, R.E.Ogilvie, Trans. Metall. Soc. AMIEV, 233, 812 (1965).
 
37. R.Berman, Thermal Conduction of Solids, Clarendon Press, Oxford (1976).
 
38. C.Y.Ho et al., J. Phys. Chem. Ref. Data, 12, 183 (1983).
https://doi.org/10.1063/1.555684
 
39. C.Y.Ho, M.W.Ackerman, K.Y.Wu et al., J. Phys. Chem. Ref. Data, 7, 959 (1978).
https://doi.org/10.1063/1.555583
 
40. A.M.Ermolaev, B.A.Merisov, V.I.Khotkevich, Fizika Metalov i Metallov., 24, 1104 (1967).
 
41. B.A.Merisov, G.Ya.Khadzhaj, P.N.V'yugov et al., Metallofiz. Noveishie Tekhnol., 33, 301 (2011).
 
42. V.A.Pervakov, Low-temperature Thermal Conductivity of Metals with Defects, Gos. Spez. .Izd. Osnova, Kharkov (1993) [in Russian].
 
43. Yu.Kagan, A.P.Zhernov, Zh. Eksper. Teor. Fiziki, 50, 1107 (1966)
 
44. A.M.Ermolaev, FMM, 23, 813 (1967).
https://doi.org/10.2307/2528431
 
45. K.Jin, B.Sales, G.Stocks et al., Sci. Rep., 6, 20159 (2016).
https://doi.org/10.1038/srep20159
 
46. P.L.Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge University Press (1987).
https://doi.org/10.1017/CBO9780511600289
 
47. Z.Hashin, S.Shtrikman, J. Appl. Phys., 33, 3125 (1962).
https://doi.org/10.1063/1.1728579
 
48. A.H.Wilson, Proc. Roy. Soc. A, 167, 580 (1938).
https://doi.org/10.1098/rspa.1938.0156
 
49. L.Colquitt, J. App. Phys., 36, 8 (1965).
https://doi.org/10.1063/1.1714510
 
50. G.W.Webb, Phys. Rev., 181, 1127 (1969).
https://doi.org/10.1103/PhysRev.181.1127
 
51. S.Banerjee, A.K.Raychaudhuri, Phys. Rev. B, 50, 8195 (1994).
https://doi.org/10.1103/PhysRevB.50.8195
 
52. Y.Kao et al., J. Alloy. Comp., 509, 1607 (2011).
https://doi.org/10.1016/j.jallcom.2010.10.210
 
53. O.A.Gavrenko, B.A.Merisov, G.Ya.Khadzhaj, Met. Phys. Adv. Tech., 15, 1215 (1996).
 
54. J.M.Ziman. Electrons and Phonons. The Theory of Transport Phenomena in Solids, Oxford at the Clarendon Press (1960).
 
55. N.V.Volkenshtein, V.P.Dyakina, V.E.Startsev, Phys. Stat. Sol. B, 57, 9 (1973).
https://doi.org/10.1002/pssb.2220570102
 
56. J.-F.Lin, J.P.Bird, L.Rotkina et al., App. Phys. Lett., 84, 3828 (2004).
https://doi.org/10.1063/1.1745108
 
57. S.S.Yeh, J.J.Lin, Jing Xiunian et al., Phys. Rev. B, 72, 024204 (2005).
https://doi.org/10.1103/PhysRevB.72.024204
 
58. M.Yu.Reizer, A.V.Sergeev, Zh. Eksper. Teor. Fiziki, 65, 1291 (1987).
 
59. Y.Tanji, J. Phys. Soc. Jpn., 30, 133 (1971).
https://doi.org/10.1143/JPSJ.30.133
 

Current number: