Funct. Mater. 2021; 28 (2): 279-286.

doi:https://doi.org/10.15407/fm28.02.279

High-strength aluminosilicate glass composite materials with special electrophysical properties

O.V.Savvova1, N.K.Blinova2, O.I.Fesenko1, G.K.Voronov1, O.V.Babich3,4, S.O.Riabinin5

1O.Beketov National University of Urban Economy in Kharkiv, 17 Marshal Bazhanov Str., 61002 Kharkiv, Ukraine
2V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3Research Institution "Ukrainian Research Institute of Environmental Problems", 6 Bakulina Str., 61166 Kharkiv,Ukraine
4Luhansk National Agrarian University, 68, Slobozhanska Str., 92703, Starobelsk, Ukraine
5National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

For the development of compositions of high-strength protective materials, lithium-aluminum silicate glass-ceramic materials based on lithium disilicate crystals and spodumene crystals were chosen as the basis. The gradient type composite material included: a first layer with low conductivity (glass-ceramic material); the second layer with medium conductivity (glass-ceramic material and filler, silicon carbide grade 54C in an amount of 30 parts by weight per 100 parts by weight of glass); third layer with medium conductivity (thin layer of graphite,which is applied by aerosol method). It has been determined that for the developed composite materials, the formation of a gradient structure makes it possible to increase such electrical properties as tgδ from 0.005 to 0.03-0.04; ε from 4.75 to 6.0-7.0 and the strength properties KCU to 6.2 kJ/m2 and K1C up to 4.2 MPa·m1/2.

Keywords: 
gradient type radio-absorbing glass-composite materials, dielectric constant, dielectric loss tangent, mechanical properties, armor elements.
References: 
1. V.Kapur, Stealth Technology and its Effect on Aerial Warfare, Institute for Defence Studies and Analyses (2014).
 
2. H.Y.Atay, Res. Eng. Struct. Mat., 3, 45 (2017).
 
3. M.D.A.Albano, F.Vricella, Santoni Mater., 11, 1 (2018).
 
4. G.N.Shabanova, E.V.Khristich, S.M.Logvinkov, Refract. Techn. Cer., 7-8, 35 (2012).
 
5. A.G.Abubakarov, I.A.Verbenko, L.A.Reznichenko et al., 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW), 26-30 June, 159 (2017).
 
6. G.M.Shabanova, S.M.Logvinkov, A.N.Korogodskaya, Barium-containing Refractory Materials for Special Purposes, Monograph, NTU KhPI, Kharkiv (2018).
 
7. Z.V.Koryakova, Compon. Technol., 50, 15 (2011).
 
8. Yun Mo Sung, J. Mater. Sci., 37, 699 (2002).
https://doi.org/10.1023/A:1013823410950
 
9. E.I.Suzdaltsev, New Refractories, 10, 5 (2014).
 
10. Pat. USA 5060553 (1991).
 
11. Pat. US 2015/0274581 A1 (2015).
 
12. O.Savvova, L.Bragina, G.Voronov et al., Chem. Chem. Technol., 11, 214 (2017).
https://doi.org/10.23939/chcht11.02.214
 
13. Pat. UK GB 2379659 A (2003).
 
14. L.P.Yatsuk, A.F.Lyakhovsky, V.A.Katrich, Progr. Electromagn. Res., 49, 9 (2016).
https://doi.org/10.2528/PIERM16042401
 
15. O.V.Savvova, G.K.Voronov, O.V.Babich, Functional Materials, 26, 182 (2019).
https://doi.org/10.15407/fm26.01.182
 
16. O.V.Savvova, A.F.Lyakhovsky, N.K.Blinova, Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 151 (2019).
 
 
 

Current number: