Funct. Mater. 2021; 28 (2): 301-307.

doi:https://doi.org/10.15407/fm28.02.301

Prospective biologically active compounds based on 5-formylthiazole

V.M.Kotlyar1, O.O.Kolomoitsev1, D.O.Tarasenko1, Y.H.Bondarenko1, S.V.Butenko1, O.V.Buravov2, M.I.Kotlyar3, A.D.Roshal1

1V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Enamine Ltd., 78 Chervonotkatska St., 02094 Kyiv, Ukraine
3Kharkiv National University of Civil Engineering and Architecture, 40 Sumska St., 61002 Kharkiv, Ukraine

Abstract: 

Thiazole cycle is a structural element of many compounds which have potential or already proven fungicidal, bactericidal and antiviral activity. A number of compounds and materials with promising antimicrobial effects can be functionalized by introducing the thiazole component into their composition. Among them, there are photoreactive materials, complexing agents, convenient building blocks for the synthesis of biologically active compounds etc. We have developed a number of synthetic approaches, as well as optimized conditions for obtaining new thiazole-containing compounds, which have the prospect of practical application based on their physicochemical properties and potential biological activity.

Keywords: 
thiazole, pyrimidine, benzimidazole, chalcone, amidine.
References: 
1. K. Rajavelu, P. Rajakumar, Synth. Commun., 48(1), 38-49 (2017).
https://doi.org/10.1080/00397911.2017.1385815
 
2. F.-M. Coman, A.T.Mbaveng, D.Leonte et al., Med. Chem. Res., 27(5), 1396-1407 (2018). 
https://doi.org/10.1007/s00044-018-2156-2
 
3. V.Cuartas, S.M.Robledo, I.D.Velez et al., Arch. Pharm., e1900351 (2020).1.
https://doi.org/10.1002/ardp.201900351
 
4. I.Parasotas, E.Urbonaviciute,K. Anusevicius et al., Heterocycles, 94(6), 1074 (2017). 
https://doi.org/10.3987/COM-17-13714
 
5. M.Ono, M.Hori, M.Haratake et al., Bioorg. Med. Chem., 15(19), 6388-6396 (2007).
https://doi.org/10.1016/j.bmc.2007.06.055
 
6. S.Bondock, A. M.Fouda, Synth. Commun., 48(5), 561-573 (2018). 
https://doi.org/10.1080/00397911.2017.1412465
 
7. K.Abou-Melha, J. Mol. Struct., 1224, 129215 (2021). 
https://doi.org/10.1016/j.molstruc.2020.129215
 
8. V.N.Kotlyar, P.A.Pushkarev, V.D.Orlov et al., Chem. Heterocycl. Compd., 46(3), 334-341 (2010). 
https://doi.org/10.1007/s10593-010-0509-y
 
9. E.K.A.Abdelall, G.M.Kamel, Eur. J. Med. Chem., 118, 250-258 (2016). 
https://doi.org/10.1016/j.ejmech.2016.04.049
10. H.Bredereck, R.Gompper, G.Morlock, Chem. Ber., 90(6), 942-952 (1957).
https://doi.org/10.1002/cber.19570900613
 
11. H. Bredereck, R. Gompper, H. Herlinger, Chem. Ber., 91(12), 2832-2849 (1958).
https://doi.org/10.1002/cber.19580911240
 
12. B.Kumar, P.Sharma, V.P.Gupta et al., Bioorg. Chem., 78, 130-140 (2018). 
https://doi.org/10.1016/j.bioorg.2018.02.027
 
13. A.Solankee, K.Kapadia, A.Ciric et al., Eur. J. Med. Chem., 45(2), 510-518 (2010).
https://doi.org/10.1016/j.ejmech.2009.10.037
 
14. Y.Shi, Q.Liu, J.Tang, Monatsh. Chem., 142(9), 907-916 (2011). 
https://doi.org/10.1007/s00706-011-0507-5
 
15. O.O.Kolomoitsev, E.S.Gladkov, V.M.Kotlyar et al., Chem. Heterocycl. Compd., 56(10), 1329-1334 (2020). 
https://doi.org/10.1007/s10593-020-02818-x
 
16. M.M.Heravi, S.Sadjadi, H.A.Oskooie et al., Tetrahedron Lett., 50(6), 662-666 (2009). 
https://doi.org/10.1016/j.tetlet.2008.11.105
 
17. M.Martinez-Alonso, J.Cerda, C.Momblona et al., Inorg. Chem., 56(17), 10298-10310 (2017).
https://doi.org/10.1021/acs.inorgchem.7b01167
 
18. V.M.Kotlyar, O.O.Kolomoitsev, D.V.Nikolaievskyi et al., J. Mol. Struct., 1180, 741-746 (2019). 
https://doi.org/10.1016/j.molstruc.2018.12.015
 

 

Current number: