Funct. Mater. 2021; 28 (2): 315-322.
The influence of artificial and biogenic magnetic nanoparticles on the metabolism of fungi
1National Technical University of Ukraine "I. Sikorsky Kyiv Polytechnic Institute", 37 Peremohy Ave., 03056 Kyiv, Ukraine
2Institute of Magnetism, National Academy of Sciences of Ukraine and MES of Ukraine, 36b Acad. V.Vernadskoho Blvd., 03142 Kyiv, Ukraine
The aim of this work is to show the effect of artificial magnetic nanoparticles of different concentrations in the soil on the metabolism of fungi and their interaction with BMNs during cultivation. It is established by methods of comparative genomics, experimental methods, methods of high-gradient magnetic separation, taking into account the unified mechanism of biomineralization of BMNs in all organisms that a number of unicellular fungi and all higher fungi are producers of BMNs. BMNs in fungi, as in animals, plants, humans, and a number of microorganisms, form chains and are part of the transport system. BMNs in fungi are located on the walls of the conducting tissue - on the walls of vascular hyphae. When artificial magnetite nanoparticles are added to the soil during mushroom growth, nanoparticle conglomerates are formed on the walls of the conducting tissue, which include both BMNs and artificial magnetite nanoparticles. At the same time, the number and size of formed magnetite conglomerates significantly affects the morphology and maturation time of fungi.
1. O.Yu.Gorobets, Visn. Nac. Akad. Nauk Ukr., 7, 53 (2015). https://doi.org/10.15407/visn2015.07.053 |
||||
2. S.A.Pavlovich, Magnetic Sensitivity and Magnetic Susceptibility of Microorganisms, Minsk, Belarus (1981) [in Russian]. | ||||
3. Y.I.Gorobets, O.Y.Gorobets, Prog. Biophys. Mol. Biol., 117, 125 (2015). https://doi.org/10.1016/j.pbiomolbio.2014.06.001 |
||||
4. R.P.Blakemore, Science, 190, 377 (1975). https://doi.org/10.1126/science.170679 |
||||
5. L.De Barros, An. Acad. Bras. Cienc., 54 (1981). | ||||
6. C.G.Cranfield, A.Dawe, V.Karloukovski et al., in: Proc. Royal Soc., B: Biol. Scien., 271 (2004), p. 436. https://doi.org/10.1098/rsbl.2004.0209 |
||||
7. Y.Suzuki, R.Kopp, T.Kogure et al., Earth Planet. Sci. Lett., 242, 39 (2006). https://doi.org/10.1016/j.epsl.2005.11.029 |
||||
8. J.F. de Oliveira, E.Wajnberg, D.M.de Souza Esquivel et al., J. R. Soc. Interface., 7, 143 (2010). https://doi.org/10.1098/rsif.2009.0102 |
||||
9. J.L.Gould, J.L Kirschvink, K.S.Deffeyes, Scien., 202, 1026 (1978). https://doi.org/10.1126/science.201.4360.1026 |
||||
10. D.Acosta-Avalos, E.Wajnberg, P.S.Oliveira et. al., J. Exp. Biol., 202, 2687 (1999). https://doi.org/10.1242/jeb.202.19.2687 |
||||
11. Ch.-Y.Hsu, F.-Y Ko, Ch.-W.Li, PLOS ONE, 4, 1 (2007). | ||||
12. B.A.Maher, in: Proc. Royal Soc London, 265 (1988), p.733. https://doi.org/10.1098/rspb.1998.0354 |
||||
13. K.J.Lohmann, J. Exp. Biol., 113, 29 (1984). https://doi.org/10.1242/jeb.113.1.29 |
||||
14. J.Brassart, J.L.Kirschvink, J.B.Phillips et al., J. Exp. Biol., 202, 3155 (1999). https://doi.org/10.1242/jeb.202.22.3155 |
||||
15. S.Mann, N.H.Sparks, M.M.Walker et al., J. Exp. Biol., 140, 35 (1988). https://doi.org/10.1242/jeb.140.1.35 |
||||
16. M.M.Walker, J.L.Kirschvink et al., Science, 224, 751 (1984). https://doi.org/10.1126/science.224.4650.751 |
||||
17. S.Gorobets, O.Gorobets, V.Golub et al., J. Phys. Conf. Ser., 903, Conf. 1 (2017). https://doi.org/10.1088/1742-6596/903/1/012001 |
||||
18. S.Gorobets, O.Gorobets, M.Bulaievska et al., Acta Phys. Pol. A, 133, 734 (2018). https://doi.org/10.12693/APhysPolA.133.734 |
||||
19. S.Gorobets, O.Gorobets, M.Bulaievska, SN Appl. Sciences, 1, 63 (2019). https://doi.org/10.1007/s42452-018-0072-1 |
||||
20. N.B.Edelman, T.Fritz, S.Nimp et al., PNAS., 112, 262 (2015). https://doi.org/10.1073/pnas.1407915112 |
||||
21. R.A.Holland, J.L.Kirschvink, T.G.Doak et al., PLOS ONE, 3, 1676 (2008). https://doi.org/10.1371/journal.pone.0001676 |
||||
22. J.Zoeger, J.R.Dunn, M.Fuller, Science, 213, 892 (1981). https://doi.org/10.1126/science.7256282 |
||||
23. W.P.Irwin, K.J.Lohmann, J. Comp. Physiol., 191, 475 (2005). https://doi.org/10.1007/s00359-005-0609-9 |
||||
24. S.V.Gorobets, O.Yu.Gorobets, O.V.Medviediev et al., Functional Materials, 24, 405 (2017). | ||||
25. F.Brem, A.M.Hirt, M.Winklhofer, J. R. Soc. Interface, 3, 833 (2006). https://doi.org/10.1098/rsif.2006.0133 |
||||
26. C.Quintana, J.M.Cowley, C.Marhic, J. Struct. Biol., 147, 166 (2004). https://doi.org/10.1016/j.jsb.2004.03.001 |
||||
27. J.F.Collingwood, R.K.K.Chong, T.Kasama et al., J. Alzheimer's Dis., 14, 235 (2008). https://doi.org/10.3233/JAD-2008-14211 |
||||
28. P.P.Grassi-Schultheiss, F.Heller, J.Dobson, Biometals, 10, 351 (1997). https://doi.org/10.1023/A:1018340920329 |
||||
29. O.Medviediev, O.Yu.Gorobets, S.V.Gorobets et al., J. Phys. Conf. Ser., 903, Conf. 1 (2017). https://doi.org/10.1088/1742-6596/903/1/012002 |
||||
30. S.Gorobets, O.Medviediev, O.Gorobets et al., Prog. Biophys. Mol. Biol., 135, 49 (2018). https://doi.org/10.1016/j.pbiomolbio.2018.01.010 |
||||
31. O.Yu.Gorobets, S.V.Gorobets, Yu.I.Gorobets, Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed., NewYork, CRC Press (2014). | ||||
32. S.V.Gorobets, O.Yu.Gorobets, Functional Materials, 19, 18 (2012). | ||||
33. O.Gorobets, S.Gorobets, M.Koralewski, Int. J. Nanomed., 12, 4371 (2017). https://doi.org/10.2147/IJN.S130565 |
||||
34. O.A.Kuznetsov, K.H.Hasenstein, J. Experimental Botany, 48, 1951 (1997). https://doi.org/10.1093/jxb/48.11.1951 |
||||
35. A.Bharde, D.Rautaray, V.Bansal et al., Small, 2 135 (2006). https://doi.org/10.1002/smll.200500180 |
||||
36. S.V.Gorobets, O.Yu.Gorobets, Yu.V.Chizh, Scientific Herald of Chernivtsy University. Biology (Biological Systems), 5, 143 (2013). | ||||
37. S.V.Gorobets, O.Yu.Gorobets, I.A.Kovahlchuk et al., Innov Biosyst Bioeng., 2, 144 (2018). https://doi.org/10.20535/ibb.2018.2.3.137752 |
||||
38. S.Gorobets, O.Gorobets, A.Duduk et al., in: Proc. IEEE AIM, La Thuile, Italy (2018). | ||||
39. S.Gorobets, O.Gorobets, M.Bulaievska et al., in: Proc. IEEE AIM, La Thuile, Italy (2018). | ||||
40. S.Gorobets, O.Gorobets, Yu.Gorobets et al., arXiv preprint arXiv:1811.06717. 018/11/16 (2018). | ||||
41. Changyou Chen, Linjie Chen,Yong Yi et al., Appl. Environ. Microbiol., 82, ??? (2016). https://doi.org/10.1128/AEM.04103-15 |
||||
42. E.Cespedes, J.M.Byrne, N.Farrowet et al., Nanoscale, 6, 12958 (2014). https://doi.org/10.1039/C4NR03004D |
||||
43. S.Gorobets, O.Gorobets, L.Kuzminykh et al., in: Proc. the National Aviat. Univ.. 2 (2019), p.76. | ||||
44. M.S.Ahmad, S.Ahmad, B.Gautam et al., J. Med. Hum. Genet, 14, 395 (2013). https://doi.org/10.1016/j.ejmhg.2013.07.002 |
||||
45. C.Lang, D.Schuler, J. Phys.:Condens. Matter, 18, S2815 (2006). https://doi.org/10.1088/0953-8984/18/38/S19 |
||||
46. S.V.Gorobets, L.A.Yevzhyk, I.A.Kovalchuk et al., Biotechnologia Acta., 12, 63 (2019). https://doi.org/10.15407/biotech12.05.063 |
||||
47. S.V.Gorobets, O.A.Radionov, O.V.Kovalyov, Innov. Biosyst. Bioengin, 4, (2020). https://doi.org/10.20535/ibb.2020.4.2.199367 |
||||
48. L.V.Garibova, Growing Mushrooms, Veche, Moscow (2005) [in Russian]. | ||||
49. A.I.Morozov, Cultivation of Champignons. Stalker, Donetsk (2003) [in Russian]. | ||||
50. I.Lascu, S.K.Banerjee, Th.S.Berquo, Geochem Geophys, 11, ??? (2010). https://doi.org/10.1029/2010GC003182 |
||||
51. A.M.Ahmed, B.A.Maher, PNAS, 115, 1736 (2018). https://doi.org/10.1073/pnas.1719186115 |
||||
52. A.A.Vasiliev, V.S.Zybalov, A.A.Skryabin, Perm Agrarian Bulletin, 2, 3 (2014). | ||||
53. H.Mikeshyna, Y.Darmenko, O.Gorobets, Acta Phys. Pol. A, 133, 731 (2018). https://doi.org/10.12693/APhysPolA.133.731 |
||||
54. K.Vega, M.Kalkum, Int. J. Microbiol., 2012 (2012). https://doi.org/10.1155/2012/920459 |
||||
55. J.S.Nunes, M.R.de Brito, D.C.Zied et al., Rev. Iberoam Micol., 34, 36 (2017). https://doi.org/10.1016/j.riam.2016.04.006 |
||||
56. S.V.Gorobets, O.Yu.Gorobets, I.V.Demyanenko, Scien. Herald .Chernivtsy University. Biology (Biological Systems), 6, 159 (2014). | ||||
57. O.Yu.Gorobets, S.V.Gorobets, L.V.Sorokina, Functional Materials, 21, 427 (2014). https://doi.org/10.15407/fm21.04.427 |
||||
58. S.V.Gorobets, O.Yu.Gorobets, I.A.Kovahlchuk et al., Innov. Biosyst. Bioeng., 2, 232 (2018). https://doi.org/10.20535/ibb.2018.2.4.147310 |
||||
59. R.de Souza Pereira et al., FEBS Lett., 552 (2003). https://doi.org/10.1016/S0014-5793(03)00910-4 |
||||
60. J.L.Kirschvink, Bioelectromagn., 10, 239 (1989). https://doi.org/10.1002/bem.2250100304 |
||||
61. A.Kobayashi, N.Yamamoto, K.JL, J. Jpn. Soc. Powder Powder Metall, 43, 1354 (1996). https://doi.org/10.2497/jjspm.43.1354 |
||||
62. S.Gorobets, O.Gorobets, A.Magerman, arXiv, 1901. 07212 (2018). | ||||
63. D.O.Serra, A.M.Richter, R.Hengge, J. Bacteriol., 195, 5540 (2013). https://doi.org/10.1128/JB.00946-13 |
||||
64. M.Riquelme, J.Aguirre, S.Bartnicki-Garcia, Microbiol. Mol. Biol. R, 82, 1 (2018). https://doi.org/10.1128/MMBR.00068-17 |
||||
65. N.Glansdorff, Y.Xu, B.Labedan, Biol. Direct, 3, 1 (2008). https://doi.org/10.1186/1745-6150-3-29 |
||||
66. P.A.Maher, Proc. Natl. Acad. Sci. USA, 85, 6788 (1988). https://doi.org/10.1073/pnas.85.18.6788 |
||||
67. M.Hanzlik, C.Heunemann, E.Holtkamp-Rotzler et al., Biometals, 13, 325 (2000). https://doi.org/10.1023/A:1009214526685 |
||||
68. L.Sciacca, A.Costantino, G.Pandini et al., Oncogene, 15, 2471 (1999). https://doi.org/10.1038/sj.onc.1202600 |