Funct. Mater. 2021; 28 (2): 315-322.

doi:https://doi.org/10.15407/fm28.02.315

The influence of artificial and biogenic magnetic nanoparticles on the metabolism of fungi

S.Gorobets1, O.Gorobets1,2, I.Sharay1,2, L.Yevzhyk1

1National Technical University of Ukraine "I. Sikorsky Kyiv Polytechnic Institute", 37 Peremohy Ave., 03056 Kyiv, Ukraine
2Institute of Magnetism, National Academy of Sciences of Ukraine and MES of Ukraine, 36b Acad. V.Vernadskoho Blvd., 03142 Kyiv, Ukraine

Abstract: 

The aim of this work is to show the effect of artificial magnetic nanoparticles of different concentrations in the soil on the metabolism of fungi and their interaction with BMNs during cultivation. It is established by methods of comparative genomics, experimental methods, methods of high-gradient magnetic separation, taking into account the unified mechanism of biomineralization of BMNs in all organisms that a number of unicellular fungi and all higher fungi are producers of BMNs. BMNs in fungi, as in animals, plants, humans, and a number of microorganisms, form chains and are part of the transport system. BMNs in fungi are located on the walls of the conducting tissue - on the walls of vascular hyphae. When artificial magnetite nanoparticles are added to the soil during mushroom growth, nanoparticle conglomerates are formed on the walls of the conducting tissue, which include both BMNs and artificial magnetite nanoparticles. At the same time, the number and size of formed magnetite conglomerates significantly affects the morphology and maturation time of fungi.

Keywords: 
biogenic magnetiб nanoparticles, biomineralization, Magnetospirillum gryphiswaldense MSR-1, atomic force microscopy, magnetic force microscopy, methods of comparative genomics, Agaricus bisporus, Lentinula edodes.
References: 
1. O.Yu.Gorobets, Visn. Nac. Akad. Nauk Ukr., 7, 53 (2015).
https://doi.org/10.15407/visn2015.07.053
 
2. S.A.Pavlovich, Magnetic Sensitivity and Magnetic Susceptibility of Microorganisms, Minsk, Belarus (1981) [in Russian].
 
3. Y.I.Gorobets, O.Y.Gorobets, Prog. Biophys. Mol. Biol., 117, 125 (2015).
https://doi.org/10.1016/j.pbiomolbio.2014.06.001
 
4. R.P.Blakemore, Science, 190, 377 (1975).
https://doi.org/10.1126/science.170679
 
5. L.De Barros, An. Acad. Bras. Cienc., 54 (1981).
 
6. C.G.Cranfield, A.Dawe, V.Karloukovski et al., in: Proc. Royal Soc., B: Biol. Scien., 271 (2004), p. 436.
https://doi.org/10.1098/rsbl.2004.0209
 
7. Y.Suzuki, R.Kopp, T.Kogure et al., Earth Planet. Sci. Lett., 242, 39 (2006).
https://doi.org/10.1016/j.epsl.2005.11.029
 
8. J.F. de Oliveira, E.Wajnberg, D.M.de Souza Esquivel et al., J. R. Soc. Interface., 7, 143 (2010).
https://doi.org/10.1098/rsif.2009.0102
 
9. J.L.Gould, J.L Kirschvink, K.S.Deffeyes, Scien., 202, 1026 (1978).
https://doi.org/10.1126/science.201.4360.1026
 
10. D.Acosta-Avalos, E.Wajnberg, P.S.Oliveira et. al., J. Exp. Biol., 202, 2687 (1999).
https://doi.org/10.1242/jeb.202.19.2687
 
11. Ch.-Y.Hsu, F.-Y Ko, Ch.-W.Li, PLOS ONE, 4, 1 (2007).
 
12. B.A.Maher, in: Proc. Royal Soc London, 265 (1988), p.733.
https://doi.org/10.1098/rspb.1998.0354
 
13. K.J.Lohmann, J. Exp. Biol., 113, 29 (1984).
https://doi.org/10.1242/jeb.113.1.29
 
14. J.Brassart, J.L.Kirschvink, J.B.Phillips et al., J. Exp. Biol., 202, 3155 (1999).
https://doi.org/10.1242/jeb.202.22.3155
 
15. S.Mann, N.H.Sparks, M.M.Walker et al., J. Exp. Biol., 140, 35 (1988).
https://doi.org/10.1242/jeb.140.1.35
 
16. M.M.Walker, J.L.Kirschvink et al., Science, 224, 751 (1984).
https://doi.org/10.1126/science.224.4650.751
 
17. S.Gorobets, O.Gorobets, V.Golub et al., J. Phys. Conf. Ser., 903, Conf. 1 (2017).
https://doi.org/10.1088/1742-6596/903/1/012001
 
18. S.Gorobets, O.Gorobets, M.Bulaievska et al., Acta Phys. Pol. A, 133, 734 (2018).
https://doi.org/10.12693/APhysPolA.133.734
 
19. S.Gorobets, O.Gorobets, M.Bulaievska, SN Appl. Sciences, 1, 63 (2019).
https://doi.org/10.1007/s42452-018-0072-1
 
20. N.B.Edelman, T.Fritz, S.Nimp et al., PNAS., 112, 262 (2015).
https://doi.org/10.1073/pnas.1407915112
 
21. R.A.Holland, J.L.Kirschvink, T.G.Doak et al., PLOS ONE, 3, 1676 (2008).
https://doi.org/10.1371/journal.pone.0001676
 
22. J.Zoeger, J.R.Dunn, M.Fuller, Science, 213, 892 (1981).
https://doi.org/10.1126/science.7256282
 
23. W.P.Irwin, K.J.Lohmann, J. Comp. Physiol., 191, 475 (2005).
https://doi.org/10.1007/s00359-005-0609-9
 
24. S.V.Gorobets, O.Yu.Gorobets, O.V.Medviediev et al., Functional Materials, 24, 405 (2017).
 
25. F.Brem, A.M.Hirt, M.Winklhofer, J. R. Soc. Interface, 3, 833 (2006).
https://doi.org/10.1098/rsif.2006.0133
 
26. C.Quintana, J.M.Cowley, C.Marhic, J. Struct. Biol., 147, 166 (2004).
https://doi.org/10.1016/j.jsb.2004.03.001
 
27. J.F.Collingwood, R.K.K.Chong, T.Kasama et al., J. Alzheimer's Dis., 14, 235 (2008).
https://doi.org/10.3233/JAD-2008-14211
 
28. P.P.Grassi-Schultheiss, F.Heller, J.Dobson, Biometals, 10, 351 (1997).
https://doi.org/10.1023/A:1018340920329
 
29. O.Medviediev, O.Yu.Gorobets, S.V.Gorobets et al., J. Phys. Conf. Ser., 903, Conf. 1 (2017).
https://doi.org/10.1088/1742-6596/903/1/012002
 
30. S.Gorobets, O.Medviediev, O.Gorobets et al., Prog. Biophys. Mol. Biol., 135, 49 (2018).
https://doi.org/10.1016/j.pbiomolbio.2018.01.010
 
31. O.Yu.Gorobets, S.V.Gorobets, Yu.I.Gorobets, Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed., NewYork, CRC Press (2014).
 
32. S.V.Gorobets, O.Yu.Gorobets, Functional Materials, 19, 18 (2012).
 
33. O.Gorobets, S.Gorobets, M.Koralewski, Int. J. Nanomed., 12, 4371 (2017).
https://doi.org/10.2147/IJN.S130565
 
34. O.A.Kuznetsov, K.H.Hasenstein, J. Experimental Botany, 48, 1951 (1997).
https://doi.org/10.1093/jxb/48.11.1951
 
35. A.Bharde, D.Rautaray, V.Bansal et al., Small, 2 135 (2006).
https://doi.org/10.1002/smll.200500180
 
36. S.V.Gorobets, O.Yu.Gorobets, Yu.V.Chizh, Scientific Herald of Chernivtsy University. Biology (Biological Systems), 5, 143 (2013).
 
37. S.V.Gorobets, O.Yu.Gorobets, I.A.Kovahlchuk et al., Innov Biosyst Bioeng., 2, 144 (2018).
https://doi.org/10.20535/ibb.2018.2.3.137752
 
38. S.Gorobets, O.Gorobets, A.Duduk et al., in: Proc. IEEE AIM, La Thuile, Italy (2018).
 
39. S.Gorobets, O.Gorobets, M.Bulaievska et al., in: Proc. IEEE AIM, La Thuile, Italy (2018).
 
40. S.Gorobets, O.Gorobets, Yu.Gorobets et al., arXiv preprint arXiv:1811.06717. 018/11/16 (2018).
 
41. Changyou Chen, Linjie Chen,Yong Yi et al., Appl. Environ. Microbiol., 82, ??? (2016).
https://doi.org/10.1128/AEM.04103-15
 
42. E.Cespedes, J.M.Byrne, N.Farrowet et al., Nanoscale, 6, 12958 (2014).
https://doi.org/10.1039/C4NR03004D
 
43. S.Gorobets, O.Gorobets, L.Kuzminykh et al., in: Proc. the National Aviat. Univ.. 2 (2019), p.76.
 
44. M.S.Ahmad, S.Ahmad, B.Gautam et al., J. Med. Hum. Genet, 14, 395 (2013).
https://doi.org/10.1016/j.ejmhg.2013.07.002
 
45. C.Lang, D.Schuler, J. Phys.:Condens. Matter, 18, S2815 (2006).
https://doi.org/10.1088/0953-8984/18/38/S19
 
46. S.V.Gorobets, L.A.Yevzhyk, I.A.Kovalchuk et al., Biotechnologia Acta., 12, 63 (2019).
https://doi.org/10.15407/biotech12.05.063
 
47. S.V.Gorobets, O.A.Radionov, O.V.Kovalyov, Innov. Biosyst. Bioengin, 4, (2020).
https://doi.org/10.20535/ibb.2020.4.2.199367
 
48. L.V.Garibova, Growing Mushrooms, Veche, Moscow (2005) [in Russian].
 
49. A.I.Morozov, Cultivation of Champignons. Stalker, Donetsk (2003) [in Russian].
 
50. I.Lascu, S.K.Banerjee, Th.S.Berquo, Geochem Geophys, 11, ??? (2010).
https://doi.org/10.1029/2010GC003182
 
51. A.M.Ahmed, B.A.Maher, PNAS, 115, 1736 (2018).
https://doi.org/10.1073/pnas.1719186115
 
52. A.A.Vasiliev, V.S.Zybalov, A.A.Skryabin, Perm Agrarian Bulletin, 2, 3 (2014).
 
53. H.Mikeshyna, Y.Darmenko, O.Gorobets, Acta Phys. Pol. A, 133, 731 (2018).
https://doi.org/10.12693/APhysPolA.133.731
 
54. K.Vega, M.Kalkum, Int. J. Microbiol., 2012 (2012).
https://doi.org/10.1155/2012/920459
 
55. J.S.Nunes, M.R.de Brito, D.C.Zied et al., Rev. Iberoam Micol., 34, 36 (2017).
https://doi.org/10.1016/j.riam.2016.04.006
 
56. S.V.Gorobets, O.Yu.Gorobets, I.V.Demyanenko, Scien. Herald .Chernivtsy University. Biology (Biological Systems), 6, 159 (2014).
 
57. O.Yu.Gorobets, S.V.Gorobets, L.V.Sorokina, Functional Materials, 21, 427 (2014).
https://doi.org/10.15407/fm21.04.427
 
58. S.V.Gorobets, O.Yu.Gorobets, I.A.Kovahlchuk et al., Innov. Biosyst. Bioeng., 2, 232 (2018).
https://doi.org/10.20535/ibb.2018.2.4.147310
 
59. R.de Souza Pereira et al., FEBS Lett., 552 (2003).
https://doi.org/10.1016/S0014-5793(03)00910-4
 
60. J.L.Kirschvink, Bioelectromagn., 10, 239 (1989).
https://doi.org/10.1002/bem.2250100304
 
61. A.Kobayashi, N.Yamamoto, K.JL, J. Jpn. Soc. Powder Powder Metall, 43, 1354 (1996).
https://doi.org/10.2497/jjspm.43.1354
 
62. S.Gorobets, O.Gorobets, A.Magerman, arXiv, 1901. 07212 (2018).
 
63. D.O.Serra, A.M.Richter, R.Hengge, J. Bacteriol., 195, 5540 (2013).
https://doi.org/10.1128/JB.00946-13
 
64. M.Riquelme, J.Aguirre, S.Bartnicki-Garcia, Microbiol. Mol. Biol. R, 82, 1 (2018).
https://doi.org/10.1128/MMBR.00068-17
 
65. N.Glansdorff, Y.Xu, B.Labedan, Biol. Direct, 3, 1 (2008).
https://doi.org/10.1186/1745-6150-3-29
 
66. P.A.Maher, Proc. Natl. Acad. Sci. USA, 85, 6788 (1988).
https://doi.org/10.1073/pnas.85.18.6788
 
67. M.Hanzlik, C.Heunemann, E.Holtkamp-Rotzler et al., Biometals, 13, 325 (2000).
https://doi.org/10.1023/A:1009214526685
 
68. L.Sciacca, A.Costantino, G.Pandini et al., Oncogene, 15, 2471 (1999).
https://doi.org/10.1038/sj.onc.1202600

Current number: