Funct. Mater. 2021; 28 (2): 327-335.

doi:https://doi.org/10.15407/fm28.02.327

Simplified <$E pi>-electron Green's function coupled-cluster computations: Applications to conjugated nanomolecules

A.V.Luzanov

STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine

Abstract: 

The inclusion of electron correlation into large-molecule calculations is particularly vital for practical aspects of the Green's function (GF) theory. In the present paper, simple computational schemes of GF are given within the π-electron coupled cluster (CC) theory. In particular, the conventional LCCD method is modified by introducing a renormalized particle-hole correlation interaction, that lead us to a new more reliable scheme LCCD2. In the latter, the correlation interaction matrix contains easily computable additional terms which are quadratic in particle-hole amplitudes. The proposed models are tested for small systems. Selected examples for sufficiently large conjugated networks of helicene, graphene, and nanotube types are investigated by LCCD2 with a stress on long-range effects describing interactions of far-distant π-electron sites.

Keywords: 
Green's functions, conjugated hydrocarbons, <$E pi>-electron correlations, extended quasi-correlation approach, LCCD, and LCCD2 models.
References: 
1. D.A.Ryndyk, Theory of Qquantum Transport at Nanoscale: An Introduction, Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-24088-6
 
2. S.Datta, Lessons from Nanoelectronics. A New Perspective on Transport, World Scientific (2017).
https://doi.org/10.1142/10440-vol2
 
3. J.C.Cuevas, E.Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore (2017).
https://doi.org/10.1142/10598
 
4. K.H.Khoo, Y.Chen, S.Li, S.Y.Quek, Phys. Chem. Chem. Phys., 17, 77 (2015).
https://doi.org/10.1039/C4CP05006A
 
5. E.P.Hoy, D.A.Mazziotti, T.Seideman, J. Chem. Phys., 147, 184110 (2017).
https://doi.org/10.1063/1.4986804
 
6. Y.Tsuji, E.Estrada, R.Movassagh, R.Hoffmann, Chem. Rev., 118, 4887 (2018).
https://doi.org/10.1021/acs.chemrev.7b00733
 
7. A.V.Luzanov, Funct. Mater., 26, 152 (2019).
https://doi.org/10.15407/fm26.01.152
 
8. A.V.Luzanov, Funct. Mater., 27, 147 (2020) 
https://doi.org/10.15407/fm27.01.147
 
A.V.Luzanov, in: Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications. Springer Proc. Physics, 246, ed. by O.Fesenko, L.Yatsenko, Springer, Cham (2021) p.587.
 
9. A.V.Luzanov, in: Nanooptics, Nanophotonics, Nanostructures, and Their Applications. Springer Proc. in Physics, vol. 222, ed. by O.Fesenko, L.Yatsenko, Springer, Cham (2019), p.341.
 
10. B.T.Pickup, O.Goscinski, Mol. Phys., 26, 1013 (1973).
https://doi.org/10.1080/00268977300102261
 
11. M.Nooijen, J.G.Snijders, Int. J. Quantum Chem., 48, 15 (1993).
https://doi.org/10.1002/qua.560480103
 
12. M.Nooijen, J.G.Snijders, J. Chem. Phys., 102, 1681 (1995).
https://doi.org/10.1063/1.468900
 
13. I.Shavitt, R.J.Bartlett, Many-body Methods in Chemistry and Physics: MBPT and Coupled-cluster Theory, Cambridge University Press (2009).
https://doi.org/10.1017/CBO9780511596834
 
14. K.Bhaskaran-Nair, K.Kowalski, W.A.Shelton, J. Chem. Phys., 144, 144101 (2016).
https://doi.org/10.1063/1.4944960
 
15. A.V.Luzanov, J. Struct. Chem., 44, 681 (2003).
https://doi.org/10.1023/B:JORY.0000017944.22348.da
 
16. K.G.L.Pedersen, M.Strange, M.Leijnse et al., Phys. Rev. B, 90, 125413 (2014).
https://doi.org/10.1103/PhysRevB.90.125413
 
17. A.B.Zakharov,V.V.Ivanov, J. Struct. Chem., 52, 645 (2011)
https://doi.org/10.1134/S0022476611040019
 
A.B.Zakharov, V.V.Ivanov, L.Adamowicz. in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.57.
 
18. J.Paldus, M.Takahashi, R.W.H.Cho, Phys. Rev. B, 30, 4267 (1984).
https://doi.org/10.1103/PhysRevB.30.4267
 
19. A.V.Luzanov, Y.F.Pedash. Theor. Experim. Chem., 21, 367 (1976)
https://doi.org/10.1007/BF01004506
 
A.V.Luzanov, Int. J. Quantum Chem., 108, 671 (2008).
https://doi.org/10.1002/qua.21551
 
20. D.Casanova, A.I.Krylov, Phys. Chem. Chem. Phys., 22, 4326 (2020).
https://doi.org/10.1039/C9CP06507E
 
21. A.V.Luzanov, O.V.Prezhdo, J. Chem. Phys., 124, 224109 (2006).
https://doi.org/10.1063/1.2204608
 
22. A.V.Luzanov, O.V.Prezhdo, J. Chem. Phys., 125, 154106 (2006).
https://doi.org/10.1063/1.2360262
 
23. V.A.Rassolov, J. Chem. Phys., 117, 5978 (2002).
https://doi.org/10.1063/1.1503773
 
24. E.Pastorczak, K.Pernal, Phys. Chem. Chem. Phys., 17, 8622. (2015).
https://doi.org/10.1039/C4CP05958A
 
25. K.Hashimoto, J.Cizek, J.Paldus, Int. J. Quantum. Chem., 34, 407 (1988).
https://doi.org/10.1002/qua.560340502

Current number: