Funct. Mater. 2021; 28 (2): 359-365.

doi:https://doi.org/10.15407/fm28.02.359

Prediction of carbide liquidus and carbide composition of the Ni-14Cr-9Co-5Ti-3Al-3Ta-3.5W-1.5Mo-0.15Hf-0.1C system

V.E.Ol'shanetskii1, A.A.Glotka1, V.V.Klochikhin2

1Zaporizhzhia Polytechnic National University, 64 Zhukovskogo Str., 69063 Zaporizhzhia, Ukraine
2JSC "MOTOR SICH", 15 Motorobudivnukiv Str., 69068 Zaporizhzhia, Ukraine

Abstract: 

The specificity of the distribution of alloying elements in carbides of the multicomponent system Ni-14Cr-9Co-5Ti-3Al-3Ta-3.5W-1.5Mo-0.15Hf-0.1C has been studied. The CALPHAD method was used to simulate the thermodynamic processes of crystallization. The dependences of the influence of alloying elements on the temperatures of dissolution (precipitation) of carbides are obtained. The results of thermodynamic calculations of the chemical composition of carbides are presented in comparison with the experimental data obtained by electron microscopy on a microscope REM-106I with a system of energy-dispersive X-ray spectral microanalysis. It is shown that the dependences obtained are closely correlated with thermodynamic processes occurring in the system.

Keywords: 
nickel-based superalloys of directional solidification, alloying system, CALPHAD method, structure, composition of carbides.
References: 
1. C.T.Sims, N.S.Stoloff, W.C.Hagel, Superalloys II, John Wiley & Sons, New York (1995). ISBN: 978-0-471-01147-7
 
2. B.G.Choi, Solid State Phenomena, 124-126, 1505 (2007).
https://doi.org/10.4028/www.scientific.net/SSP.124-126.1505
 
3. A.Mitchell, S.L.Cockcroft, C.E.Schvezov et al., High Temp. Mater. Proc., 15, 27 (1996).
https://doi.org/10.1515/HTMP.1996.15.1-2.27
 
4. E.Cortes, A.Bedolla-Jacuinde, M.Rainforth et al.. J. Mater. Eng. Perform, 28, 4171 (2019).
https://doi.org/10.1007/s11665-019-04179-9
 
5. A.A.Glotka, S.V.Gaiduk, J. Appl. Spectr., 87, 812 (2020).
https://doi.org/10.1007/s10812-020-01075-2
 
6. S.Yu.Kondrat'ev, E.V.Sviatysheva, G.P.Anastasiadi et al., Acta Mater., 127, 267 (2017).
https://doi.org/10.1016/j.actamat.2017.01.043
 
7. P.Jonsta, Z.Jonsta, J.Sojka et al., J. Achiev. Mater. Manufact. Eng., 21, 29 (2017).
https://doi.org/10.4028/www.scientific.net/SSP.270.21
 
8. Li Jiang, Wen-Zhu Zhang, Zhou-Feng et al., Mater. & Design, 112, 300 (2016).
https://doi.org/10.1016/j.matdes.2016.09.075
 
9. Hu Rui, Li Jinshan, Bai Guanghai, Mater. Sci. Eng. A, 548, 83 (2012)
 
10. A.I.Balitskii, V.I.Vitvitskii, Proc. of the 2008 Int. Hydrogen Conf. Effects Hydrogen Mater., 421 (2009).
 
11. A.Balitskii, Proc. Struct. Integrity, 16, 134 (2019).
https://doi.org/10.1016/j.prostr.2019.07.032
 
12. Z.A.Duryagina, V.E.Olshanetskiy, Yu.I.Kononenko, Izd. Lviv Politehniky, Lviv (2013).
 
13. N.Saunders, M.Fahrmann, C.J.Small, Superalloys 2000 TMS, Warrendale, 803 (200).
 
14. M.F.Moreira, L.B.Fantin, F.Beneduce Neto et al., Inter. Metalcast (2020).
 
15. V.V.Gayduk, B.S.Natapov, V.E.Olshanetskiy, Fiz. Metal. Metallov., 26, 853 (1968).
 
16. Z.Hu, C.Qin, X.Chen et al., Int. J. Precis. Eng. Manuf., 21, 1421 (2020).
https://doi.org/10.1007/s12541-020-00347-3
 
17. O.A.Glotka, S.V.Haiduk, Metallofiz. Noveishie Tekhnol., 42, 869 (2020).
https://doi.org/10.15407/mfint.42.06.0869
 
18. M.Taheri, A.Halvaee, S.F.Kashani-Bozorg, Met. Mater. Int., (2019).

Current number: