Funct. Mater. 2021; 28 (2): 366-374.

doi:https://doi.org/10.15407/fm28.02.366

Formation of complex phase LaLuO3:Yb3+ nanopowders with perovskite type structure

O.V.Shyrokov1, O.V.Chudinovych1,2, T.F.Lobunets1, A.V.Ragulya1,2

1I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhizhanovsky Str., 03142 Kyiv, Ukraine
2National Technical University of Ukraine "I.Sikorsky Kyiv Polytechnic Institute", 37 Peremogy Ave., 03056, Kyiv, Ukraine

Abstract: 

Precursors for obtaining nanopowders of a perovskite-type complex oxide phase LaLuO3:Yb3+ were synthesized by the heterogeneous deposition method. The factors influencing the synthesis of precursors and the formation of the nanopowders derived from them have been established. These factors include temperature and pH of the solution, urea concentration, drying and thermal decomposition conditions. Adsorption and structural studies have shown that the synthesized precursors are mesoporous, nanodisperse powders. Depending on the synthesis conditions, the specific surface area of the synthesized precursors is 10 to 120 m2/g. At the synthesis temperature of 40 and 60°C with 10 vol. % urea content in the solution, the specific surface area of the synthesized precursors is 14 to 9.7 m2/g with an average diameter of priority range mesopores of 5.3-5.5 nm; at 80°C, the specific surface area of the precursor increases to 23.7 m2/g, and the average diameter of mesopores up to 6 nm. It has been established that the synthesis temperature influences the formation of the precursor porous structure type, e.g. powders with different types of porous structure: corpuscular or layered. It was found that the amount of urea in the synthesis of the precursor affects only the general porosity characteristics; the range of mesopore size distribution remains the same. The highest porosity is observed during synthesis at a solution temperature of 80°C and urea content of 20 vol. %. In order to obtain and study nanopowders of complex oxide phase LaLuO3:Yb3+ with a perovskite type structure, the synthesized precursors were thermally decomposed under nonisothermal conditions at a heating rate of 5 deg/min with gradual cooling; as a result, nanodisperse, mesoporous powders were formed with a specific surface area of 11-28 m2/g and an average mesoporous diameter of 11-21 nm with the main phase of a perovskite-type structure in all samples.

Keywords: 
precursor, heterogeneous deposition, specific surface area, nanopowders, perovskite, sorption isotherms.
References: 
1. S.F.Wang, J.Zhang, D.W.Luo et al., Prog. Solid State Ch., 41, 20 (2013).
https://doi.org/10.1016/j.progsolidstchem.2012.12.002
 
2. S.Jas, B.Shyam, V.Guillermo et al., Opt. Mater., 33, 511 (2011).
https://doi.org/10.1016/j.optmat.2010.10.038
 
3. L.Shenzhou, Y.Qiuhong, Zh.Bin, Zh.Haojia, Opt. Mater., 33, 746 (2011).
https://doi.org/10.1016/j.optmat.2010.10.003
 
4. C.By Shi, W.Yiquan, Am. Ceram. Soc. Bull., 2, 32 (2013).
 
5. A.Jun, S.Yoichi, T.Takunori, J.Akiyama, Opt. Lett., 35, 3598 (2010).
https://doi.org/10.1364/OL.35.003598
 
6. Y.Chen, X.Lin, Y.Lin, Z.Luo, Solid State Commun., 132, 533 (2004).
https://doi.org/10.1016/j.ssc.2004.09.010
 
7. X.Gong, F.Xiong, Y.Lin, Mater. Res. Bull., 42, 413 (2007).
https://doi.org/10.1016/j.materresbull.2006.07.013
 
8. J.Varghese, T.Joseph, M.Th.Sebastian, J. Am. Ceram. Soc., 93, 2960 (2010).
https://doi.org/10.1111/j.1551-2916.2010.03930.x
 
9. A.Feteira, A.Feteira, R.Elsebrock, D.C.Sinclair, J. Am. Ceram. Soc., 90, 1475 (2007).
https://doi.org/10.1111/j.1551-2916.2007.01549.x
 
10. S.Lu, Q.Yang, Y.Wang et al., Opt. Mater., 35, 718 (2013).
https://doi.org/10.1016/j.optmat.2012.09.014
 
11. X.L.Sun, A.I.Tok, R.Huebner, F.Y.Boey, J. Eur. Ceram. Soc., 27, 125 (2007).
https://doi.org/10.1016/j.jeurceramsoc.2006.04.172
 
12. W.N.Wang, W.Widiyastuti, T.Ogi et al., Chem. Mater., 19, 1723 (2007).
https://doi.org/10.1021/cm062887p
 
13. Y.C.Kang, S.B.Park, I.W.Lenggoro, K.Okuyama, J. Mater. Res., 14, 2611 (1999).
https://doi.org/10.1557/JMR.1999.0349
 
14. N.A.Dulina, V.N.Baumera, M.I.Danylenkob et al., Ceram. Int., 39, 2397 (2013).
https://doi.org/10.1016/j.ceramint.2012.08.092
 
15. K.Serivalsatit, T.Wasanapiarnpong, C.Kucera, J.Ballato, Opt. Mater., 35, 1426 (2013).
https://doi.org/10.1016/j.optmat.2013.02.013
 
16. M.Prakasama, O.Viraphonga, D.Michaua et al., Ceram. Int., 39, 1307 (2013).
https://doi.org/10.1016/j.ceramint.2012.07.065
 
17. D.Zhoua, Y.Renb, J.Xua et al., J. Eur. Ceram. Soc., 34, 2035 (2014).
https://doi.org/10.1016/j.jeurceramsoc.2014.01.038
 
18. J.Trojan-Piegza, E.Zych, J. Alloy. Compd., 380, 118 (2004).
https://doi.org/10.1016/j.jallcom.2004.03.037
 
19. L.Spiridigliozzi, C.Ferone, R.Cioffi et al., Materials, 12, 2062 (2019).
https://doi.org/10.3390/ma12132062
 
20. A.Eman, A.Rahman, Saudi Pharm. J., 27, 817 (2019).
https://doi.org/10.1016/j.jsps.2019.05.003
 
21. S.M.Teleb, M.S.Rafat, Maced. J. Chem. Chem. En., 25, 57 (2006).
 
22. O.V.Chudinovych, O.R.Andrievskaya, Newsletter ONU. Ser. Chem., 21, 53 (2016). DOI: 10.18524/2304-0947.2016.2(58).74785
https://doi.org/10.18524/2304-0947.2016.2(58).74785
 
23. O.V.Chudinovych, O.R.Andrievskaya, J.D.Bogatyryova et al., J. Chem. Techn., 26, 20 (2018). DOI: 10.15421/081810
https://doi.org/10.15421/0817260203
 
24. O.V.Chudinovych, Newsletter ONU. Ser. Chem., 24, 53 (2019). DOI: 10.18524/2304-0947.2019.2(70).169235
https://doi.org/10.18524/2304-0947.2019.2(70).169235
 
25. S.Greg, K.Singh, Adsorption, Specific Surface Area, Porosity, Mir, Moscow (1948) [in Russian].
 
26. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. I, Colloid and Surface Chemistry. Pure Appl. Chem., 31, 578 (1972).
 
27. K.Ito, K.Tezuka, Y.Hinatsu, J. Solid State Chem., 156, 173 (2001).
https://doi.org/10.1006/jssc.2000.9071
 

Current number: