Funct. Mater. 2021; 28 (2): 381-385.

doi:https://doi.org/10.15407/fm28.02.381

Determination of technological process modes for surface formation of substrates for functional components of microoptoelectromechanical systems

I.Sh.Nevliudov, O.O.Chala, I.V.Botsman

Kharkiv National University of Radio Electronics, 14 Nauky Ave., 61166 Kharkiv, Ukraine

Abstract: 

A method of determining the technological modes for the process of substrates surfaces shaping for the functional components of micro-optoelectromechanical systems is proposed, which allows us to improve the quality of the substrates. A mathematical model is developed to describe the influence degree of the technological process parameters on the roughness during the shaping substrate functional surfaces for the components of micro-optoelectromechanical systems. It allows predicting the parameters of finished optoelectronic products based on these components. The experimental research results for obtaining the dependence of substrate surface quality for micromirrors of optical switches on the processing modes during the grinding and polishing technological operations are presented.

Keywords: 
functional component, micro-optoelectromechanical systems, technological process, roughness, substrates.
References: 
1. O.Filipenko, O.Chala et al., in: Proc. Int. Conf. Advanced Optoelectronics and Lasers (CAOL'2019), Sozopol, Bulgaria (2019), p.371.
https://doi.org/10.1109/CAOL46282.2019.9019570
 
2. F.Zamkotsian et al., Micromachines, 8, 233 (2017).
https://doi.org/10.3390/mi8080233
 
3. V.Pamidighantam et al., in: Proc. Int. Conf. Electronics Packaging Technology Conference (EPTC'2018), Singapore, Singapore (2018), p.524.
 
4. O.Filipenko, O.Chala, O.Sychova, in: Proc. Int. Scientific-Practical Conf. Problems of Infocommunications. Science and Technology (PICS&T'2018), Kharkiv, Ukraine (2018), p.599.
https://doi.org/10.1109/INFOCOMMST.2018.8632051
 
5. A.Filipenko, B.Malik, Telecommunications and Radio Engineering, 51, 29 (1997).
https://doi.org/10.1615/TelecomRadEng.v51.i4.40
 
6. T.Alley et al., Laser-Induced Damage in Optical Materials, v.7842 (2010).
 
7. T.Gunaratne et al., in: Proc. Conf. Lasers and Electro-Optics (CLEO'2007), Baltimore, USA (2007), p.1.
 
8. M.Younis, Modeling and Simulation of Microelectromechanical Systems in Multi-physics Fields, Virginia Tech (2004).
 
9. V.Bortnikova et al., in: Proc. Int. Conf. Perspective Technologies and Methods in MEMS Design (MEMSTECH'2019), Polyana, Ukraine (2019), p.83.
https://doi.org/10.1109/MEMSTECH.2019.8817394
 
10. K.C.Sahoo, Y.Li, E.Y.Chang, Transact. Electron Devices, 57, 2427 (2010).
https://doi.org/10.1109/TED.2010.2056150
 
11. I.Plander, M.Stepanovsky, in: Proc. Int. Conf. Photonics in Switching, San Francisco, USA (2007), p.85.
 
12. T.Bifano, in: Proc. of SPIE. MEMS Adaptive Optics IV, v.7595 (2010), p.759502.
 
13. I.Nevliudov, M.Omarov, O.Chala, Eskisehir Techn. Univer. J. Sci. Techn. A - Appl. Sci. Engin., 21, 113 (2020).
https://doi.org/10.18038/estubtda.823088
 
14. S.Noell et al., MOEMS and Miniaturized Systems, v.7930 (2011).
 
15. I.Nevlyudov, V.Palagin, I.Botsman, in: Proc. Int. Scientific-Practical Conf. Problems of Infocommunications. Science and Technology (PICS&T'2016), Kharkiv, Ukraine (2016), p.237.
https://doi.org/10.1109/INFOCOMMST.2016.7905393
 
16. I Nevlyudov et al., Sci. Techn. Air Force Armed Forces of Ukraine, 3, 114 (2020).

Current number: