Funct. Mater. 2021; 28 (2): 386-393.
In situ synthesis of Diatomite@BiOBr composites by a facile method and its application in visible-light-driven decomposition of rhodamine B
Department of Traffic and Municipal Engineering, Sichuan College of Architectural Technology, 610399 Chengdu, China
Diatomite@BiOBr composites were fabricated by a facile method in this study. The crystalline phase, morphology, particle size distribution, pore structure, and optical properties were characterized by X-ray diffraction, scanning electron microscope, laser particle sizer, N2 adsorption-desorption analysis, and UV-vis diffusion reflection spectra. Decomposition of rhodamine B under visible light (λ > 400 nm) was carried out to measure the photocatalytic activity of as-prepared composites. The results showed that the addition of diatomite can lead to the enhancement of photocatalytic activity of Diatomite@BiOBr composites, among which the composite with diatomite content of 40 % exhibited the highest photocatalytic activity up to 67.07 % within 50 min. This enhanced effect can be attributed to the fact that diatomite played the role of a platform, on which the BiOBr microsphere can evenly distribute increasing active sites, while diatomite can promote the separation of hole-electron pairs, thus enhancing the photocatalytic activity. Our findings may contribute to the use of natural porous mineral for the preparation highly efficient photocatalytic composites.
1. Z.Sun, Z.Hu, Y.Yan, S.Zheng, Appl. Surf. Sci., 314, 251 (2014). https://doi.org/10.1016/j.apsusc.2014.06.171 |
||||
2. A.Luengas, A.Barona, C.Hort et al., Rev. Environ. Sci. Bio., 14, 499 (2015). https://doi.org/10.1007/s11157-015-9363-9 |
||||
3. R.O.Alves de Lima, A.P.Bazo, D.M.F.Salvadori et al., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626, 53 (2007). https://doi.org/10.1016/j.mrgentox.2006.08.002 |
||||
4. T.Yahagi, M.Degawa, Y.Seino et al., Cancer. Lett., 1, 91 (1975). https://doi.org/10.1016/S0304-3835(75)95563-9 |
||||
5. M.R.Gadekar, M.M.Ahammed, J. Environ. Manage., 231, 241 (2019). https://doi.org/10.1016/j.jenvman.2018.10.017 |
||||
6. G.Crini, G.Torri, E.Lichtfouse et al., Environ. Chem. Lett., 17, 1645 (2019). https://doi.org/10.1007/s10311-019-00903-y |
||||
7. S.K.Padmanabhan, S.Pal, E.Ul Haq, A.Licciulli, Appl. Catal. A Gen., 485, 157 (2014). https://doi.org/10.1016/j.apcata.2014.08.002 |
||||
8. M.R.Hoffmann, S.T.Martin, W.Choi, D.W.Bahnemann, Chem. Rev., 95, 69 (1995). https://doi.org/10.1021/cr00033a004 |
||||
9. D.He, H.Zhong, C.Gao, J. Alloys Compd., 799, 50 (2019). https://doi.org/10.1016/j.jallcom.2019.05.152 |
||||
10. C.McCullagh, N.Skillen, M.Adams, P.K.J.Robertson, J. Chem. Technol. Biotechnol., 86, 1002 (2011). https://doi.org/10.1002/jctb.2650 |
||||
11. S.Pal, A.M.Laera, A.Licciulli et al., Ind. Eng. Chem. Res., 53, 7931 (2014). https://doi.org/10.1021/ie404123f |
||||
12. S.Zheng, W.Jiang, Y.Cai et al., Catal. Today, 224, 83 (2014). https://doi.org/10.1016/j.cattod.2013.09.040 |
||||
13. T.Wu, P.Niu, Y.Yang et al., Adv. Funct. Mater., 29, 1901943 (2019). https://doi.org/10.1002/adfm.201901943 |
||||
14. Q.Guo, C.Zhou, Z.Ma, X.Yang, Adv. Mater., 31, 1901997 (2019). https://doi.org/10.1002/adma.201901997 |
||||
15. M.Gao, D.Zhang, X.Pu et al., Sep. Purif. Technol., 154, 211 (2015). https://doi.org/10.1016/j.seppur.2015.09.063 |
||||
16. Z.Liu, B.Wu, Y.Zhao et al., Ceram. Int., 40, 5597 (2014). https://doi.org/10.1016/j.ceramint.2013.10.152 |
||||
17. C.Xue, J.Xia, T.Wang et al., Mater. Lett., 133, 274 (2014). https://doi.org/10.1016/j.matlet.2014.07.016 |
||||
18. S.Vadivel, P.Keerthi, M.Vanitha et al., Mater. Lett., 128, 287 (2014). https://doi.org/10.1016/j.matlet.2014.04.047 |
||||
19. G.Cao, Z.Liu, Mater. Lett., 202, 32 (2017). https://doi.org/10.1016/j.matlet.2017.05.080 |
||||
20. C.Xu, H.Wu, F.L.Gu, J. Hazard. Mater., 275, 18 (2014). | ||||
21. L.Lin, M.Huang, L.Long, D.Chen, J. Alloys Compd., 615, 929 (2014). https://doi.org/10.1016/j.jallcom.2014.06.088 |
||||
22. S.E.Ivanov, A.V.Belyakov, Glass and Ceram., 65, 48 (2008). https://doi.org/10.1007/s10717-008-9005-6 |
||||
23. B.Wang, F.C.de Godoi, Z.Sun et al., J. Colloid Interface Sci., 438, 204 (2015). https://doi.org/10.1016/j.jcis.2014.09.064 |
||||
24. M.Ge, N.Zhu, Y.Zhao et al., Ind. Eng. Chem. Res., 51, 5167 (2012). https://doi.org/10.1021/ie202864n |
||||
25. Z.Jia, T.Li, Z.Zheng et al., Chem. Eng. J., 380, 122422 (2019). https://doi.org/10.1016/j.cej.2019.122422 |
||||
26. B.Li, H.Huang, Y.Guo, Y.Zhang, Appl. Surf. Sci., 353, 1179 (2015). https://doi.org/10.1016/j.apsusc.2015.07.049 |
||||
27. H.Huang, X.Li, J.Wang et al., ACS Catalysis, 5, 4094 (2015). https://doi.org/10.1021/acscatal.5b00444 |
||||
28. Y.Wang, Q.Yang, X.Wang et al., Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 244, 12 (2019). https://doi.org/10.1016/j.mseb.2019.04.005 |