Funct. Mater. 2021; 28 (2): 386-393.

doi:https://doi.org/10.15407/fm28.02.386

In situ synthesis of Diatomite@BiOBr composites by a facile method and its application in visible-light-driven decomposition of rhodamine B

Jianhua Jiang, Gang Liao

Department of Traffic and Municipal Engineering, Sichuan College of Architectural Technology, 610399 Chengdu, China

Abstract: 

Diatomite@BiOBr composites were fabricated by a facile method in this study. The crystalline phase, morphology, particle size distribution, pore structure, and optical properties were characterized by X-ray diffraction, scanning electron microscope, laser particle sizer, N2 adsorption-desorption analysis, and UV-vis diffusion reflection spectra. Decomposition of rhodamine B under visible light (λ > 400 nm) was carried out to measure the photocatalytic activity of as-prepared composites. The results showed that the addition of diatomite can lead to the enhancement of photocatalytic activity of Diatomite@BiOBr composites, among which the composite with diatomite content of 40 % exhibited the highest photocatalytic activity up to 67.07 % within 50 min. This enhanced effect can be attributed to the fact that diatomite played the role of a platform, on which the BiOBr microsphere can evenly distribute increasing active sites, while diatomite can promote the separation of hole-electron pairs, thus enhancing the photocatalytic activity. Our findings may contribute to the use of natural porous mineral for the preparation highly efficient photocatalytic composites.

Keywords: 
BiOBr, diatomite, photo-decomposition, rhodamine B.
References: 
1. Z.Sun, Z.Hu, Y.Yan, S.Zheng, Appl. Surf. Sci., 314, 251 (2014).
https://doi.org/10.1016/j.apsusc.2014.06.171
 
2. A.Luengas, A.Barona, C.Hort et al., Rev. Environ. Sci. Bio., 14, 499 (2015).
https://doi.org/10.1007/s11157-015-9363-9
 
3. R.O.Alves de Lima, A.P.Bazo, D.M.F.Salvadori et al., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626, 53 (2007).
https://doi.org/10.1016/j.mrgentox.2006.08.002
 
4. T.Yahagi, M.Degawa, Y.Seino et al., Cancer. Lett., 1, 91 (1975).
https://doi.org/10.1016/S0304-3835(75)95563-9
 
5. M.R.Gadekar, M.M.Ahammed, J. Environ. Manage., 231, 241 (2019).
https://doi.org/10.1016/j.jenvman.2018.10.017
 
6. G.Crini, G.Torri, E.Lichtfouse et al., Environ. Chem. Lett., 17, 1645 (2019).
https://doi.org/10.1007/s10311-019-00903-y
 
7. S.K.Padmanabhan, S.Pal, E.Ul Haq, A.Licciulli, Appl. Catal. A Gen., 485, 157 (2014).
https://doi.org/10.1016/j.apcata.2014.08.002
 
8. M.R.Hoffmann, S.T.Martin, W.Choi, D.W.Bahnemann, Chem. Rev., 95, 69 (1995).
https://doi.org/10.1021/cr00033a004
 
9. D.He, H.Zhong, C.Gao, J. Alloys Compd., 799, 50 (2019).
https://doi.org/10.1016/j.jallcom.2019.05.152
 
10. C.McCullagh, N.Skillen, M.Adams, P.K.J.Robertson, J. Chem. Technol. Biotechnol., 86, 1002 (2011).
https://doi.org/10.1002/jctb.2650
 
11. S.Pal, A.M.Laera, A.Licciulli et al., Ind. Eng. Chem. Res., 53, 7931 (2014).
https://doi.org/10.1021/ie404123f
 
12. S.Zheng, W.Jiang, Y.Cai et al., Catal. Today, 224, 83 (2014).
https://doi.org/10.1016/j.cattod.2013.09.040
 
13. T.Wu, P.Niu, Y.Yang et al., Adv. Funct. Mater., 29, 1901943 (2019).
https://doi.org/10.1002/adfm.201901943
 
14. Q.Guo, C.Zhou, Z.Ma, X.Yang, Adv. Mater., 31, 1901997 (2019).
https://doi.org/10.1002/adma.201901997
 
15. M.Gao, D.Zhang, X.Pu et al., Sep. Purif. Technol., 154, 211 (2015).
https://doi.org/10.1016/j.seppur.2015.09.063
 
16. Z.Liu, B.Wu, Y.Zhao et al., Ceram. Int., 40, 5597 (2014).
https://doi.org/10.1016/j.ceramint.2013.10.152
 
17. C.Xue, J.Xia, T.Wang et al., Mater. Lett., 133, 274 (2014).
https://doi.org/10.1016/j.matlet.2014.07.016
 
18. S.Vadivel, P.Keerthi, M.Vanitha et al., Mater. Lett., 128, 287 (2014).
https://doi.org/10.1016/j.matlet.2014.04.047
 
19. G.Cao, Z.Liu, Mater. Lett., 202, 32 (2017).
https://doi.org/10.1016/j.matlet.2017.05.080
 
20. C.Xu, H.Wu, F.L.Gu, J. Hazard. Mater., 275, 18 (2014).
 
21. L.Lin, M.Huang, L.Long, D.Chen, J. Alloys Compd., 615, 929 (2014).
https://doi.org/10.1016/j.jallcom.2014.06.088
 
22. S.E.Ivanov, A.V.Belyakov, Glass and Ceram., 65, 48 (2008).
https://doi.org/10.1007/s10717-008-9005-6
 
23. B.Wang, F.C.de Godoi, Z.Sun et al., J. Colloid Interface Sci., 438, 204 (2015).
https://doi.org/10.1016/j.jcis.2014.09.064
 
24. M.Ge, N.Zhu, Y.Zhao et al., Ind. Eng. Chem. Res., 51, 5167 (2012).
https://doi.org/10.1021/ie202864n
 
25. Z.Jia, T.Li, Z.Zheng et al., Chem. Eng. J., 380, 122422 (2019).
https://doi.org/10.1016/j.cej.2019.122422
 
26. B.Li, H.Huang, Y.Guo, Y.Zhang, Appl. Surf. Sci., 353, 1179 (2015).
https://doi.org/10.1016/j.apsusc.2015.07.049
 
27. H.Huang, X.Li, J.Wang et al., ACS Catalysis, 5, 4094 (2015).
https://doi.org/10.1021/acscatal.5b00444
 
28. Y.Wang, Q.Yang, X.Wang et al., Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 244, 12 (2019).
https://doi.org/10.1016/j.mseb.2019.04.005

Current number: