Funct. Mater. 2021; 28 (3): 410-414.

doi:https://doi.org/10.15407/fm28.03.410

Exciton absorption spectrum of thin films of Cs1-xRbxCu2Cl3 solid solutions

E.N.Kovalenko1, O.N.Yunakova2, N.N.Yunakov2

1V.N.Karazin, Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Kharkiv National University of Radio Electronics, 14 Nauky Ave., 61166 Kharkiv, Ukraine

Abstract: 

The exciton absorption spectra of thin films of Cs1-xRbxCu2Cl3 solid solutions were studied in the spectral range of 2 to 6 eV. The formation of solid solutions that are isostructural with CsCu2Cl3 was found in the concentration range 0≤x≤0.6, the formation of solid solutions that are isostructural with RbCu2Cl3 was detected in the range 0.6 < x≤1. A linear concentration dependences of the parameters of the exciton bands and the bandgap width were found in the ranges 0≤x≤0.6 and 0.6≤x≤1. Exciton spectra of Cs1-xRbxCu2Cl3 0≤x≤1 solid solutions were interpreted on the basis of the transitions in the Cu+ ions.

Keywords: 
solid solutions, thin films, absorption spectra, excitons.
References: 
1. S.Hull, P.Berastegui, J. Solid State Chem., 177, 3156 (2004).
https://doi.org/10.1016/j.jssc.2004.05.004
 
2. S.Geller, J.R.Akridge, S.A.Wilber, Phys. Rev. B, 5396 (1979).
https://doi.org/10.1103/PhysRevB.19.5396
 
3. G.Meier, Z.Anorg, Allg. Chem., 515, 127 (1984).
https://doi.org/10.1002/zaac.19845150814
 
4. A.K.Ivanov-Shits, I.V.Murin, Ionics of the Solid State, vol. 1, St. Petersburg (2000) [in Russian].
 
5. V.K.Miloslavsky, O.N.Yunakova, Sun Jia-Lin, Opt. Spectrosc., 78, 436 (1995).
 
6. V.K.Miloslavsky, O.N.Yunakova, E.N.Kovalenko, Functional Materials, 4, 12 (1997).
 
7. R.Roccanova, A.Yangui, H.Nhalil et al., ACS Appl. Electron. Mater., 1, 269 (2019).
https://doi.org/10.1021/acsaelm.9b00015
 
8. V.K.Miloslavsky, E.N.Kovalenko, O.N.Yunakova, Opt. Spectrosc., 84, 940 (1998).
 
9. E.N. Kovalenko, O. N. Yunakova, N.N. Yunakov, Low Temper. Phys., 47, No. 5, 462 (2021)
https://doi.org/10.1063/10.0004238
 
10. G.M.Lescano, Maria E.F.de Rapp, J.A.Schmidt, N.W.de Reca, Mater. Lett., 45, 269 (2000).
https://doi.org/10.1016/S0167-577X(00)00116-6
 
11. V.F.Vybornov, V.S.Shvetsov, V.V.Ivanov, A.M.Kolomoets, Izv. USSR Academy of Sciences Inorganic Materials, 20, 1413 (1984).
 
12. V.S.Shvetsov, V.F.Vybornov, Electrochemistry, 19, 942 (1983).
 
13. R.Kanno, Y.Takeda, Y.Masuyama et al., Solid State Ionics, 11, 221 (1983).
https://doi.org/10.1016/0167-2738(83)90027-9
 
14. J.M.Gaines, S.Geller, Phys. Rev. B, 34, 8963 (1986).
https://doi.org/10.1103/PhysRevB.34.8963
 
15. O.N.Yunakova, V.K.Miloslavsky, E.N.Kovalenko, Opt. i Spec., 104, 631 (2008).
https://doi.org/10.1134/S0030400X08040115
 
16. V.S.Shvetsov, V.F.Vybornov, V.V.Ivanov, Electrochemistry, 18, 986 (1982).
 
17. J.M.Gaines, S.Geller, Phys. Rev. B, 34, 8963 (1986).
https://doi.org/10.1103/PhysRevB.34.8963
 
18. J.M.Gaines, S.Geller, J. Electrochem Soc., 133, 1501 (1986).
https://doi.org/10.1149/1.2108944
 
19. V.K.Miloslavsky, E.N.Kovalenko, O.N.Yunakova, N.N.Yunakov, Low Temper. Phys., 43, 1532 (2017).
https://doi.org/10.1063/1.5008417
 
20. O.N.Yunakova, V.K.Miloslavsky, E.N.Kovalenko, Functional Materials, 11, 761 (2004).

Current number: