Funct. Mater. 2021; 28 (3): 415-419.

doi:https://doi.org/10.15407/fm28.03.415

Internal photoelectric effect and possible superconductivity of group V elements (semimetals)

Yu.I.Boyko1, V.V.Bogdanov1, R.V.Vovk1, B.V.Grinyov2

1V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

The possibility of using the internal photoelectric effect to transfer semimetals (Bi, Sb, etc.) to a superconducting state at atmospheric pressure and room temperature is discussed. Irradiation of a semimetal with photons of a certain energy and flux power density can cause a significant change in its energy spectrum ("metallized" semimetals with "degenerate" electrons), and also the appearance of an increased fraction of optical phonons in this substance. In accordance with the microscopic theory of superconductivity in metals (BCS theory), both of these factors should determine the effective electron-phonon interaction and, as a consequence, can cause the transition of semimetals to the superconducting state. According to the estimates given in the work, the superconducting state in the near-surface semimetal layer with a thickness ~10-6 m (or in film) at temperatures close to room one can be realized under conditions of their laser irradiation with a wavelength λ ~10-5 m and pulse duration ≈10-8 s when power density ~1011 W/m2 is reached.

Keywords: 
photoelectric effect, superconductivity, semimetals.
References: 
1. E.Linton, Superconductivity, Mir, Moscow (1971) [in Russian].
 
2. A.F.Volkov, N.V.Zavaritsky, F.Ya.Nady, Electronic Devices Based on Loosely Coupled Superconductors, Mir, Moscow (1978) [in Russian].
 
3. A.F.Volkov, N.V.Zavaritsky, F.Ya.Nagy, Weak Superconductivity, Quantum Interferometers and their Applications, Mir, Moscow (1980) [in Russian].
 
4. A.Schilling, M.Cantoni, J.Guo, H.Ott, Nature, 363, 56 (1993),
https://doi.org/10.1038/363056a0
 
5. Y.Li, J.Hao, H.Liu, Y.Ma, J. Chem. Phys., 140, 174 (2014).
 
6. A.P.Drosdov, M.I.Eremets, I.A.Troyan et al., Nature, 525, 73 (2015).
https://doi.org/10.1038/nature14964
 
7. M.Somayazulu, M.Ahart, A.K.Mishra et al., Rev. Lett., 44, 81 (2018).
 
8. Yu.I.Boyko, V.V.Bogdanov, R.V.Vovk, Vestnik of Karazin KhNU, ser. "Physics", 32, 10 (2020).
 
9. Yu.I.Boyko, V.V.Bogdanov, R.V.Vovk, B.V.Grinev, Functional Materials, 4, 703 (2020).
 
10. J.Bardeen, L.M.Cooper, J.R.Schrieffer, Phys. Rev., 108, 1175 (1957).
https://doi.org/10.1103/PhysRev.108.1175
 
11. V.L.Bonch-Bruevich, S.G.Kalashnikov, Physics of Semiconductors, Nauka, Moscow (1977) [in Russian].
 
12. A.S.Davydov, Solid State Theory, Nauka, Moscow (1976) [in Russian].
 
13. R.Byub, Photoconductivity of Solids, Mir, Moscow (1973) [in Russian].
 
14. V.S.Letohov, Uspehi Fiz. Nauk, 125, 57 (1978).
https://doi.org/10.3367/UFNr.0125.197805e.0057
 
15. B.P.Feirand, A.H.Clauer, J. Appl. Phys., 50, 1497 (1979),
https://doi.org/10.1063/1.326137
 
16. S.M.Ryvkin, Photoelectric Phenomena in Semiconductors, Phys. Math. Lit. Publ., Moscow (1963) [in Russian].
 
17. V.Kresin, H.Gutfreund, W.Little, Sol. State Common., 51, 339 (1984).
https://doi.org/10.1016/0038-1098(84)90701-4
 

Current number: