Funct. Mater. 2021; 28 (3): 420-426.

doi:https://doi.org/10.15407/fm28.03.420

Features of ROS generation during hydrogen peroxide decomposition by nanoceria at different pH values

V.V.Seminko, P.O.Maksimchuk, G.V.Grygorova, K.O.Hubenko, S.L.Yefimova

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Nanoceria (CeO2-x) is well-known due to its superior ROS (reactive oxygen species) scavenging properties, but recent studies have revealed its ability to generate various types of ROS as well. Value of pH of nanoceria water solution is definitely one of the key parameters determining the type of redox activity of nanoceria (antioxidant vs. prooxidant), but generally both types of activities can co-exist at the same time, and the resulting effect of nanoceria-ROS interaction is determined by subtle interplay between pro- and antioxidant properties of these nanoparticles at specific pH value. In this paper three types of fluorescent sensors (DPPP, coumarin, and epinephrine) were used to study the processes of ROS scavenging/generation during hydrogen peroxide (HP) decomposition by nanoceria. Increase of pH of HP-nanoceria solutions from 4 to 10 is accompanied by suppression of the processes of generation of hydroxyl radicals (·OH), but, in turn, leads to advanced generation of superoxide anions (O2-) indicating two competing routes of HP decomposition prevailing at different pH values. Generally, prooxidant properties of nanoceria can be observed at low pH that can be useful for selective activation of apoptosis in cancer cells which pH value is less than for non-cancer ones.

Keywords: 
nanoceria, pH, hydrogen peroxide, hydroxyl radicals, superoxide anions.
References: 
1. B.A.Rzigalinski, Technol. Cancer Res. Treat., 4, 651 (2005).
https://doi.org/10.1177/153303460500400609
 
2. J.Chen, S.Seal, S.A.Sezate et al., IOVS, 43, 186 (2005).
 
3. P.Allawadhi, A.Khurana, S.Allwadhi et al., Nano Today, 35, 100982 (2020).
https://doi.org/10.1016/j.nantod.2020.100982
 
4. R.W.Tarnuzzer, J.Colon, S.Patil, S.Seal, Nano letters, 5, 2573 (2005).
https://doi.org/10.1021/nl052024f
 
5. M.V.Liberti, J.W.Locasale, Trends Biochem. Sci, 41, 211 (2016).
https://doi.org/10.1016/j.tibs.2015.12.001
 
6. J.M.Perez, A.Asati, S.Nath, C.Kaittanis, Small, 4, 552 (2008).
https://doi.org/10.1002/smll.200700824
 
7. L.Rubio, R.Marcos, A.Hernandez, Chem.-Biol. Interact, 291, 7 (2018).
https://doi.org/10.1016/j.cbi.2018.06.002
 
8. R.Mehmood, X.Wang, P.Koshy et al., Cryst. Eng. Comm., 20, 1536 (2018).
https://doi.org/10.1039/C8CE00001H
 
9. S.S.Lee, W.Song, M.Cho et al., ACS Nano, 7, 9693 (2013).
https://doi.org/10.1021/nn4026806
 
10. T Pirmohamed, J.M.Dowding, S.Singh et al., Chem. Commun., 46, 2736 (2010).
https://doi.org/10.1039/b922024k
 
11. B.Halliwell, J.Gutteridge, Biochem. J., 219, 1 (1984).
https://doi.org/10.1042/bj2190001
 
12. K.Zamojc, M.Zdrowowicz, D.Jacewicz et al., Crit. Rev. Anal. Chem., 46, 171 (2016).
https://doi.org/10.1080/10408347.2015.1014085
 
13. M.Paya, B.Halliwell, J,R.S.Hoult, Biochem. Pharmacol., 44, 205 (1992).
https://doi.org/10.1016/0006-2952(92)90002-Z
 
14. V.K.Klochkov, A.V.Grigorova, O.O.Sedyh, Y.V.Malyukin, Colloid Surf. A: Physicochem. Eng. Asp., 409, 176 (2012).
https://doi.org/10.1016/j.colsurfa.2012.06.019
 
15. V.Seminko, P.Maksimchuk, G.Grygorova et al., Chem. Phys. Lett., 767, 138363 (2021).
https://doi.org/10.1016/j.cplett.2021.138363
 
16. E.G.Heckert, A.S.Karakoti, S.Seal, W.T.Self, Biomaterials, 29, 2705 (2008).
https://doi.org/10.1016/j.biomaterials.2008.03.014
 
17. I.Celardo, J.Z.Pedersen, E.Traversa, L.Ghibelli, Nanoscale, 3, 1411 (2011).
https://doi.org/10.1039/c0nr00875c
 
18. V.Seminko, A.Masalov, P.Maksimchuk et al., Nanomaterials for Security, Springer, Dordrecht (2016).
 
19. Y.Malyukin, P.Maksimchuk, V.Seminko et al., J. Phys. Chem. C, 122, 16406 (2018).
https://doi.org/10.1021/acs.jpcc.8b03982
 

Current number: