Funct. Mater. 2021; 28 (3): 437-443.

doi:https://doi.org/10.15407/fm28.03.437

Magnetic, structural and photocatalytic properties of spinel ferrite composition MeFe2O4 (Me = Ni, Mn, Zn) prepared by modified coprecipitation method

L.A.Frolova1, O.V.Khmelenko2

1Ukrainian State University of Chemical Technology, 8 Gagarina Ave., 49005 Dnipro, Ukraine
2Oles Honchar Dnipro National University, 72 Gagarina Ave., 49010 Dnipro, Ukraine

Abstract: 

Composite ferrites MeFe2O4 (Me = Ni, Mn, Zn) were synthesized by a modified coprecipitation method. To characterize the obtained samples, the methods of X-ray diffraction analysis and vibration magnetometry were used. The dependences of the parameters of the EPR spectra, diffuse reflection spectra, and UV spectra on the composition were also interpreted. It was found that the obtained ferrite nanoparticles have a spinel structure. The lattice parameter decreases with increasing nickel content. The minimum values correspond to the double compositions of Mn-Ni ferrites. The synthesized nanoferrites have a band gap of 1.55 to 2.2 eV. Magnetic properties such as saturation magnetization and coercive force vary greatly depending on the concentration of Mn cations. The photocatalytic activity of the compounds was studied in the decomposition reaction of methylene blue, which was used as a model organic pollutant. It was found that the photocatalytic activity of ZnFe2O4 and MnFe2O4 significantly increases with an increase in the content of nickel cations.

Keywords: 
spinel, diffuse reflection spectra, photocatalytic activity, EPR spectra.
References: 
1. R.Sharma, P.Thakur, M.Kumar et al., J. Alloy. Compd., 746, 532 (2018).
https://doi.org/10.1016/j.jallcom.2018.02.287
 
2. F.Vetr, Z.Moradi-Shoeili, S.Ozkar, Appl. Organomet. Chem., 32, e4465 (2018).
 
3. K.Bindu, H.S.Nagaraja, Mater. Res. Express, 6, 095015 (2019).
https://doi.org/10.1088/2053-1591/ab2ca8
 
4. A.Pathania, S.Bhardwaj, S.S.Thakur et al., Physica B: Condensed Matter, 531, 45 (2018).
 
5. M.A.Maksoud, G.S.El-Sayyad, A.Abokhadra et al., J. Mater. Sci.:Mater. Electron., 31, 2598 (2020).
 
6. S.O.Aisida, P.A.Akpa, I.Ahmad et al., Physica B: Condens. Matt., 571, 130 (2019).
 
7. S.Sanatombi, S.Sumitra, S.Ibetombi, Iran. J. Sci. Technol. A, 42, 2397 (2018).
https://doi.org/10.1007/s40995-017-0405-8
 
8. N.I.Abu-Elsaad, S.A.Mazen, H.M.Salem, J. Alloy. Compd., 835, 155227 (2020).
https://doi.org/10.1016/j.jallcom.2020.155227
 
9. A.K.Tyagi, D.S.Ahlawat, Orient. J. Chem., 33, 296 (2017).
https://doi.org/10.13005/ojc/330135
 
10. B.I.Kharisov, H.R.Dias, O.V.Kharissova, Arab. J. Chem., 12, 1234 (2019).
https://doi.org/10.1016/j.arabjc.2014.10.049
 
11. M.A.Almessiere, Y.Slimani, A.D.Korkmaz et al., J. Supercond. Nov. Magn., 32, 3837 (2019).
https://doi.org/10.1007/s10948-019-05147-z
 
12. R.S.Melo, P.Banerjee, A.Franco, J. Mater. Sci.: Mater. Electron., 29, 14657 (2018).
 
13. K.Jalaiah, K.V.Babu, J. Magn. Magn. Mater., 423, 275 (2017).
https://doi.org/10.1016/j.jmmm.2016.09.114
 
14. L.Frolova, A.Pivovarov, E.Tsepich, J. Chem. Technol. Metall., 51, 163 (2016).
 
15. P.Dolcet, S.Diodati, F.Zorzi et al., Green Chem., 20, 2257 (2018).
https://doi.org/10.1039/C8GC00086G
 
16. F.Ding, J.Lin, T.Wu, H.Zhong, Appl. Phys. A, 126, 1 (2020).
https://doi.org/10.1007/s00339-020-3406-y
 
17. Y.Liu, J.Hsu, Appl. Sci., 8, 1005 (2018).
https://doi.org/10.3390/app8061005
 
18. S.Mirzaee, Y.Azizian-Kalandaragh, P.Rahimzadeh, Solid State Sci., 99, 106052 (2020).
https://doi.org/10.1016/j.solidstatesciences.2019.106052
 
19. H.Harzali, A.Marzouki, F.Saida et al., J. Magn. Magn. Mater., 460, 89 (2018).
https://doi.org/10.1016/j.jmmm.2018.03.062
 
20. I.Szczygiel, K.Winiarska, A.Sobianowska-Turek, J. Therm. Anal. Calorim., 134, 51 (2018).
https://doi.org/10.1007/s10973-018-7417-2
 
21. J.S.Smart, Am. J. Phys., 23, 356 (1955).
https://doi.org/10.1119/1.1934006
 
22. F.Ding, J.Lin, T.Wu et al., Appl. Phys. A 126, 221 (2020).
 
23. L.Frolova, A.Pivovarov, E.Tsepich, in: Fesenko O., Yatsenko L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proc. Physics, vol. 183, Springer, Cham.
 
24. L.A.Frolova, M.P.Derhachov, Nanoscale Res. Lett., 12, 1 (2017). 505.
https://doi.org/10.1186/s11671-017-2268-5
 
25. L.Frolova, A.Pivovarov, T.Butyrina, Pigment & Resin Technology, 46, 356 (2017).
https://doi.org/10.1108/PRT-07-2016-0073
 
26. P.Iranmanesh, S.Saeednia, M.Mehran et al., J. Magn. Magn. Mater., 425, 31 (2017).
https://doi.org/10.1016/j.jmmm.2016.10.105
 
27. R.S.Yadav, I.Kuritka, J.Vilcakova et al., J. Phys. Chem. Solids, 110, 87 (2017).
https://doi.org/10.1016/j.jpcs.2017.05.029
 

 

Current number: