Funct. Mater. 2021; 28 (3): 444-449.

doi:https://doi.org/10.15407/fm28.03.444

Kinetics of layer polymorphous crystallization of amorphous films of antimony sulfide

A.G.Bagmut

National Technical University "Kharkiv Politechnic Institute", 2, Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

Geometry and kinetics of crystal growth in amorphous films of antimony sulfide was studied by the methods of transmission electron microscopy in situ with video recording of structural changes. It was demonstrated, that electron-beam irradiation of an amorphous film with stoichiometric composition causes its layer polymorphous crystallization. In the area of the film heated by an electron beam, a single flat Sb2S3 crystal of an elliptical shape nucleates and grows. With a linear (in time t) increase in the crystal size, the crystallized fraction x ~ t2, and the crystallization process is characterized by a relative length δ0~4068. In the case of a nonlinear increase in the crystal size x ~ t1.2, the crystallization process is characterized by a relative length δ0~2898.

Keywords: 
amorphous state, kinetics, antimony sulfide, crystallization, electron microscopy, video recording.
References: 
1. I.S.Virt, I.O.Rudyj, I.V.Kurilo et al., Semiconductors, 47, 1003 (2013).
https://doi.org/10.1134/S1063782613070233
 
2. JCPDS Powder Diffraction File Card No. 42-1393 (International Centre for Diffraction Data, Swarthmore, PA (1996).
 
3. M.Trivedi, G.Nayak, S.Patil et al., Ind. Eng. Manage, 4, 1 (2015).
 
4. A.G.Bagmut, S.N.Grigorov, V.M.Kosevich et al., Functional Materials, 15, 332 (2008).
 
5. S.Mahanty, J.M.Merino, M.Lerona, J. Vac. Sci. Technol., A 15, 3060 (1997).
 
6. U.Koster, U.Herold, Crystallization of Metallic Glasses, in: H.-J.Guntherodt, H.Beck (Eds.), Glassy Metals i Ionic Structure, Electronic Transport, and Crystallization, Springer, Berlin Heidelberg, New York (1981), p.225.
https://doi.org/10.1007/3540104402_10
 
7. A.G.Bagmut, I.A.Bagmut, Mol. Cryst. Liquid Cryst., 673, 120 (2018).
https://doi.org/10.1080/15421406.2019.1578501
 
8. A.G.Bagmut, Tech. Phys. Lett., 38, 488 (2012).
https://doi.org/10.1134/S1063785012050197
 
9. A.G.Bagmut, Functional Materials, 26, 6 (2019).
https://doi.org/10.15407/fm26.01.6
 
10. A.N.Kolmogorov, Izv. Acad. Sci. USSR, Ser. Math., 1, 355 (1937).
 
11. L.S.Palatnik, A.A.Nechitailo, A.A.Kozma, Dokl. Akad. Nauk SSSR, 261, 1134 (1981).

Current number: