Funct. Mater. 2021; 28 (3): 450-462.

doi:https://doi.org/10.15407/fm28.03.450

Binding of two cationic compounds with graphene oxide: comparative analysis and observation of synergetic effect

O.A.Boryak, V.S.Shelkovsky, M.V.Kosevich, A.M.Plokhotnichenko, V.V.Orlov, V.A.Karachevtsev

B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Abstract: 

The present paper reports on the results of the joint interaction of two organic cationic compounds of different structure and nature, namely bisquaternary ammonium decamethoxinum (Dec) with flexible dication and methylene blue (MB) with heterocyclic planar cation, with graphene oxide (GO) in aqueous dispersion. The qualitative differences in the 3D structures of GO modified in binary (GO+Dec), (GO+MB) and ternary (GO+Dec+MB) systems were observed and described on the basis of the UV-vis spectral analysis of the systems. On mixing the components of the binary (GO+Dec) system, a rather rapid gelation of GO dispersion was observed. The appearance of binary (GO+MB) system showed dependence on GO to MB ratio: at low GO content, MB-induced coagulation of GO to tiny bluish flakes took place followed by their sedimentation with time while at high GO content, the GO complexes with MB preserved solubility in water. The result of the joint addition of both Dec and MB to GO dispersion differed qualitatively from the above results of action of individual components. On creation of the (GO+Dec+MB) ternary system rapid flocculation of all components of the system was observed resulting in the formation of dark residue surfacing over the purified decolorized liquid. UV-vis spectra of the liquid phase showed suppression of the lines of all components or their complexes practically to the baseline. The compression of (GO+Dec+MB) composite to flocs is explained by the matching of the size of MB cation to that of Dec dication linker, which provides tight filling of the gaps between GO sheets. The observed flocculation effect in the (GO+Dec+MB) system may be of practical interest in the development of nanocomposite and sorption materials. Information on the features of GO interactions with organic cations differing in structure may be useful for advances in drug delivery problem.

Keywords: 
graphene oxide, organic cations, methylene blue, decamethoxinum, UV-vis spectroscopy, joint effect, noncovalent interactions.
References: 
1. G.Rajakumar, X.-H.Zhang, T.Gomathi et al., Processes, 8, 355 (2020).
https://doi.org/10.3390/pr8030355
 
2. C.Backes, A.M.Abdelkader, C.Alonso et al., 2D Mater., 7, 022001 (2020).
https://doi.org/10.1088/2053-1583/ab1e0a
 
3. E.Clithy, Sci. Insights, 29, 52 (2019).
https://doi.org/10.15354/si.19.re089
 
4. X.Zhang, Y.Wang, G.Luo et al., Sensors, 19, 2966 (2019).
https://doi.org/10.3390/s19132966
 
5. C.Cheng, S.Li, A.Thomas et al., Chem. Rev., 117, 1826 (2017).
https://doi.org/10.1021/acs.chemrev.6b00520
 
6. V.C.Sanchez, A.Jachak, R.H.Hurt et al., Chem. Res. Toxicol., 25, 15 (2012).
https://doi.org/10.1021/tx200339h
 
7. K.Haubner, J.Murawski, P.Olk et al., Chem. Phys. Chem., 11, 2131 (2010).
https://doi.org/10.1002/cphc.201000132
 
8. V.Georgakilas, J.N.Tiwari, K.C.Kemp et al., Chem. Rev., 116, 5464 (2016).
https://doi.org/10.1021/acs.chemrev.5b00620
 
9. S.Y.Wu, S.S.A.An, J.Hulme, Int. J. Nanomed., 10, 9 (2015).
https://doi.org/10.2217/nnm.13.208
 
10. Y.Pan, N.G.Sahoo, L.Li, Expert Opin. Drug Delivery, 9, 1365 (2012).
https://doi.org/10.1517/17425247.2012.729575
 
11. A.Sahu, W.I.Choi, J.H.Lee et al., Biomaterials, 34, 6239 (2013).
https://doi.org/10.1016/j.biomaterials.2013.04.066
 
12. S.Liu, T.H.Zeng, M.Hofmann et al., ACS Nano, 5, 6971 (2011).
https://doi.org/10.1021/nn202451x
 
13. M.Yousefi, M.Dadashpour, M.Hejazi et al., Mater. Sci. Eng. C. Mater. Biol. Appl., 74, 568 (2017).
https://doi.org/10.1016/j.msec.2016.12.125
 
14. V.Palmieri, M.Papi, Nano Today, 33, 100883 (2020).
https://doi.org/10.1016/j.nantod.2020.100883
 
15. S.Ye, K.Shao, Z.Li et al., ACS Appl. Mater. Interfaces, 7, 21571 (2015).
https://doi.org/10.1021/acsami.5b06876
 
16. Z.Yang, H.Yan, H.Yang et al., Water Res., 47, 3037 (2013).
https://doi.org/10.1016/j.watres.2013.03.027
 
17. S.-T.Yang, S.Chen, Y.Chang et al., J. Colloid Interface Sci., 359, 24 (2011).
https://doi.org/10.1016/j.jcis.2011.02.064
 
18. M.Sabzevari, D.E.Cree, L.D.Wilson, ACS Omega, 3, 13045 (2018).
https://doi.org/10.1021/acsomega.8b01871
 
19. S.Song, Y.Ma, H.Shen et al., RSC Adv., 5, 27922 (2015).
https://doi.org/10.1039/C4RA16982D
 
20. M.Brennan, S.Boopathi, A.R.Thiruppathi et al., New J. Chem., 44 4519 (2020).
 
21. A.Khan, J.Wang, J.Li et al., Environ. Sci. Pollut. Res., 24, 7938 (2017).
https://doi.org/10.1007/s11356-017-8388-8
 
22. V.A.Pashynskaya, M.V.Kosevich, A.Gomory et al., Rapid Commun. Mass Spectrom., 16, 1706 (2002).
https://doi.org/10.1002/rcm.771
 
23. R.H.Schirmer, H.Adler, M.Pickhardt et al., Neurobiol. Aging, 32, 2325.e7 (2011).
https://doi.org/10.1016/j.neurobiolaging.2010.12.012
 
24. V.S.Shelkovsky, Biophys. l Bull., 1, 5 (2015). Retrieved from https://periodicals.karazin.ua/ biophysvisnyk/article/view/4270
 
25. T.Liu, Y.Liu, M.Liu et al., Burns Trauma, 6, 23 (2018).
 
26. L.Wang, J.He, L.Zhu et al., J. Colloid Interface Sci., 535, 149 (2019).
https://doi.org/10.1016/j.jcis.2018.09.084
 
27. J.Yi, G.Choe, J.Park et al., Polym. J., 52, 823 (2020).
https://doi.org/10.1038/s41428-020-0350-9
 
28. A.I.Pruna, A.Barjola, A.C.Carcel et al., Nanomaterials, 10, 1446 (2020).
https://doi.org/10.3390/nano10081446
 
29. Y.Sun, T.Zhou, W.Li et al., Chemosphere, 241, 125110 (2020).
https://doi.org/10.1016/j.chemosphere.2019.125110
 
30. S.Wang, J.Wang, W.Zhang et al., Ind. Eng. Chem. Res., 53, 13205 (2014).
https://doi.org/10.1021/ie501448p
 
31. H.Bai, C.Li, X.Wang et al., J. Phys. Chem. C, 115, 5545 (2011).
https://doi.org/10.1021/jp1120299
 
32. Z.-H.Liu, Z.-M.Wang, X.Yang et al., Langmuir, 18, 4926 (2002).
https://doi.org/10.1021/la011677i
 
33. Y.J.Yang, X.Yu, J. Solid State Electrochem., 20, 1697 (2016).
https://doi.org/10.1007/s10008-016-3178-7
 
34. W.Meng, E.Gall, F.Ke et al., J. Phys. Chem., 119, 21135 (2015).
 
35. T.M.McCoy, H.C.W.Parks, R.F.Tabor, Carbon, 135, 164 (2018).
https://doi.org/10.1016/j.carbon.2018.04.032
 
36. N.Pan, Y.Wei, X.Ren et al., J. Mater. Sci., 55, 13751 (2020).
https://doi.org/10.1007/s10853-020-04993-w
 
37. Y.Li, Q.Du, T.Liu et al., Chem. Eng. Res. Des., 91, 361 (2013).
https://doi.org/10.1016/j.cherd.2012.07.007
 
38. J.Bujdak, N.Iyi, T.Fujita, Clay Miner., 37, 121 (2002).
https://doi.org/10.1180/0009855023710022
 
39. J.Cenens, R.A.Schoonheydt, Clays Clay Miner., 36, 214 (1988).
https://doi.org/10.1346/CCMN.1988.0360302
 
40. K.Bergmann, C.T.O'Konski, J. Phys. Chem., 67, 2169 (1963).
https://doi.org/10.1021/j100804a048
 
41. P.Montes-Navajas, N.G.Asenjo, R.Santamaria et al., Langmuir, 29, 13443 (2013).
https://doi.org/10.1021/la4029904
 
42. H.Yan, X.Tao, Z.Yang et al., J. Hazard. Mater., 268, 191 (2014).
https://doi.org/10.1016/j.jhazmat.2014.01.015
 
43. W.Peng, H.Li, Y.Liu, S.Song, J. Mol. Liq., 221, 82 (2016).
https://doi.org/10.1016/j.molliq.2016.05.074
 
44. C.H.Chia, N.F.Razali, M.S.Sajab et al., Sains Malays., 42, 819 (2013).
 
45. B.Nissanka, N.Kottegoda, D.R.Jayasundara, J. Mater. Sci., 55, 1996 (2020).
https://doi.org/10.1007/s10853-019-04087-2
 
46. P.Ranjan, P.Verma, S.Agrawal et al., Mater. Chem. Phys., 226, 350 (2019).
https://doi.org/10.1016/j.matchemphys.2019.01.047
 
47. A.Molla, Y.Li, B.Mandal, Appl. Surf. Sci., 464, 170 (2019).
https://doi.org/10.1016/j.apsusc.2018.09.056
 
48. C.R.Minitha, M.Lalitha, Y.L.Jeyachandran et al., Mater. Chem. Phys., 194, 243 (2017).
https://doi.org/10.1016/j.matchemphys.2017.03.048
 
49. J.Hou, Y.Chen, W.Shi et al., Appl. Surf. Sci., 505, 144145 (2020).
https://doi.org/10.1016/j.apsusc.2019.144145
 
50. Q.Lai, S.Zhu, X.Luo et al., AIP Adv., 2, 032146 (2012).
https://doi.org/10.1063/1.4747817
 
51. S.L.Fornili, G.Sgroi, V.Izzo, J. Chem. Soc., Faraday Trans., 1, 3049 (1981).
https://doi.org/10.1039/f19817703049
 
52. E.Braswell, J. Phys. Chem., 72, 2477 (1968).
https://doi.org/10.1021/j100853a035
 
53. D.Heger, J.Jirkovsky, P.Klan, J. Phys. Chem. A, 109, 6702 (2005).
https://doi.org/10.1021/jp050439j
 
54. O.V.Ovchinnikov, A.V.Evtukhova, T.S.Kondratenko et al., Vib. Spectrosc., 86, 181 (2016).
https://doi.org/10.1016/j.vibspec.2016.06.016
 
55. A.Fernandez-Perez, T.Valdes-Solis, G.Marban, Dyes Pigm., 161, 448 (2019).
https://doi.org/10.1016/j.dyepig.2018.09.083
 
56. V.A.Pashynska, M.V.Kosevich, A.Gomory et al., Rapid Commun. Mass Spectrom., 19, 785 (2005).
https://doi.org/10.1002/rcm.1846
 
57. V.A.Pokrovsky, M.V.Kosevich, V.L.Osaulenko et al., Mass-spektrometria, 3, 183 (2005).
 
58. V.Pashynska, O.Boryak, M.V.Kosevich et al., Eur. Phys. J. D, 58, 287 (2010).
https://doi.org/10.1140/epjd/e2010-00125-5
 
59. M.Sinoforoglu, B.Gur, M.Arik et al., RSC Adv., 3, 11832 (2013).
https://doi.org/10.1039/c3ra40531a
 
60. D.D.Zhang, L.Fu, L.Liao et al., Electrochim. Acta, 75 71 (2012).
https://doi.org/10.1016/j.electacta.2012.04.074
 
61. V.Narayanaswamy, S.Alaabed, M.-A.AL-Akhras et al., Mater. Today: Proc., 28, 1078 (2020).
https://doi.org/10.1016/j.matpr.2020.01.086
 
62. V.Narayanaswamy, H.Kumar, C.Srivastava et al., Mater. Express,, 10, 314 (2020).
https://doi.org/10.1166/mex.2020.1647
 
63. J.Liu, P.Li, H.Xiao et al., AIP Adv., 5, 117151 (2015).
https://doi.org/10.1063/1.4936846
 
64. V.V.Chagovets, M.V.Kosevich, S.G.Stepanian et al., J. Phys. Chem. C, 116, 20579 (2012).
https://doi.org/10.1021/jp306333c
 
65. O.Shih, A.H.England, G.C.Dallinger et al., J. Phys. Chem., 139, 035104 (2013).
https://doi.org/10.1063/1.4813281
 

Current number: