Funct. Mater. 2021; 28 (3): 463-468.

doi:https://doi.org/10.15407/fm28.03.463

Mechanisms for increasing dynamic moduli in low density polyethylene composites with
methylene blue dye

M.A.Alieksandrov1, T.M.Pinchuk-Rugal1, O.P.Dmytrenko1, M.P.Kulish1, Yu.E.Grabovskyy1, A.P.Onanko1, A.I.Misiura1, O.L.Pavlenko1, A.I.Lesiuk1, I.P.Pundyk1, T.O.Busko1, V.V.Strelchuk2, O.F.Colomys2

1T.Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01033 Kyiv, Ukraine
2V..Lashkaryov Institute of Semiconductor Physics, 45 Nauky Ave., 03028 Kyiv, Ukraine

Abstract: 

The crystalline structure, degree of crystallinity, dynamic modules, Raman photoluminescence were studied for low-density polyethylene composites with different content methylene blue dye. It is shown that the degree of crystallinity varies little in a wide range of the modifier content (0-0.07 volume fraction). There is a non-monotonic concentration dependence of the elasticity modulus, shear modulus and Poisson coefficient; this indicates the formation of polymer layers on the dye surface, which are responsible for improving the physical and mechanical properties of the composite. In the immobilized layers, the intermediate phase of the polymer with oriented chains occurs, the conformation of which changes with an increase in the dye content. This phase is characterized by a complex defective structure, including polyene units of different lengths.

Keywords: 
low density polyethylene, dye, elastic modulus, shear modulus, crystallinity, polyene structures.
References: 
1. Ye.P.Mamunya, V.V.Davydenko, P.Pissis et al., Eur. Polym., 38, 1887 (2002).
https://doi.org/10.1016/S0014-3057(02)00064-2
 
2. A.V.Eletskii, Uspekhi Fizicheskikh Nauk, 185, 225 (2015).
https://doi.org/10.3367/UFNr.0185.201503a.0225
 
3. Ye.Mamunya, M.Iurzhenko, I.Paraschenko et al., Polymer J., 38, 3 (2016).
https://doi.org/10.15407/polymerj.38.01.003
 
4. A.I.Misiura, Y.P.Mamunya, V.L.Demchenko et al., Polymer J., 39, 154 (2017).
https://doi.org/10.15407/polymerj.39.03.154
 
5. L.Bardas, G.Boiteux, R.Grykien et al., Polymer J., 40, 230 (2018).
https://doi.org/10.15407/polymerj.40.04.230
 
6. A.I.Misiura, Y.P.Mamunya, Metallofiz. i Noveishie Tekhnologii, 39, 154 (2017).
 
7. Z.O.Gagolkina, E.V.Lobko et al., Voprosy Khimii i Khimicheskoi Tekhnologii, 5, 59 (2013).
 
8. H.M.Zidan, A.El-Khodary, I.A.El-Sayed et al., J. Appl. Polym. Sci., 117, 1416 (2010).
 
9. H.M.Zidan, N.A.El-Ghamaz, A.M.Abdelghany et al., Int. J. Electrochem. Sci., 11, 9041 (2016).
https://doi.org/10.20964/2016.11.08
 
10. Ye.Mamunya, M.Iurzhenko, E.Lebedev et al., Polymer J., 30, 324 (2008).
 
11. S.Kanagaraj, R.M.Guedes, M.Oliveira et al., J. Nanosci. Nanotechn., 8, 4008 (2008).
https://doi.org/10.1166/jnn.2008.AN53
 
12. M.Tasyurek, S.Ekinci, M.Mirik, Athens J. Techn. Engin., 2, 181 (2015).
https://doi.org/10.30958/ajte.2-3-3
 
13. S.Sahu, N.Badgayan, S.Samanta et al., Mater. Sci. Forum, 27, 917 (2018).
https://doi.org/10.4028/www.scientific.net/MSF.917.27
 
14. Ye.P.Mamunya, M.V.Iurzhenko, E.V.Lebedev et al., Electroactive Polymer Materials, Alpha-reklama, Kyiv (2013).
 
15. H.Pang, L.Xu, D-X.Yan et al., Progr. Polymer Sci., 39, 1908 (2014).
https://doi.org/10.1016/j.progpolymsci.2014.07.007
 
16. S.A.Gordeyev, G.Yu.Nikolaeva, K.A.Prokhorov, Laser Phys., 6, 121 (1996).
 
17. S.Lu, A.E.Russell, P.J.Hendra, J. Mater. Sci., 33, 4721 (1998).
https://doi.org/10.1023/A:1004489104344
 
18. K.A.Prokhorov, G.Yu.Nikolaeva S.A.Gordeyev et al., Laser Phys., 11, 86 (2001).
 
19. D.Barron, C.Birkinshaw, Polymer., 49, 3111 (2008).
https://doi.org/10.1016/j.polymer.2008.05.004
 
20. T.Kida, T.Oku, Y.Hiejima et al., Polymer, 58, 88 (2015).
https://doi.org/10.1016/j.polymer.2014.12.030
 
21. T.Kida, Y.Hiejima, K.-H.Nitta, Polym. Test, 44, 30 (2015).
https://doi.org/10.1016/j.polymertesting.2015.03.018
 
22. T.Kida, Y.Hiejima, K.-H.Nitta, Int. J. Exp. Spectrosc. Tech., 1, 2 (2016).
https://doi.org/10.35840/2631-505X/8501

Current number: