Funct. Mater. 2021; 28 (3): 469-474.

doi:https://doi.org/10.15407/fm28.03.469

Preparation of polyaniline/manganese dioxide nanocomposites by in situ polymerization method and their conductivity properties

S.C.Vella Durai1, R.Indira2, E.Kumar3

1Department of Physics, JP College of Arts and Science, Agarakattu, Tenkasi, Tamilnadu, India
2PG Department of Chemistry, SDNB Vaishnav College for Women, Chromepet, Chennai. Tamilnadu, India
3School of Science, Department of Physics, Tamil Nadu Open University, Chennai. Tamilnadu, India

Abstract: 

The polyaniline /manganese dioxide nanocomposite (PANI/MnO2) was prepared by in situ polymerization. The structural, electrical conductivity, complex electric modulus, dielectric and optical properties of the nanocomposites were analyzed using powder XRD, impedance and optical spectra. After heating of PANI/MnO2 nanocomposites, XRD shows structure changes to an extremely less crystalline state due to the melting of MnO2, which is inside the PANI chain. The AC conductivity of nanocomposites was analyzed in the range from 298 K to 423 K. The AC conductivity of nanocomposites varies with frequency. The highest conductivity is 5.798 Ohm/cm at a temperature of 373 K. The dielectric permittivity is constant in the region of higher frequencies and differs in the region of lower frequencies. Studies of FTIR spectra have shown that there is a very strong interaction between MnO2 and the PANI chain.

Keywords: 
conductivity, dielectric, modulus, optical, structural.
References: 
1. K.Wang, J.Huang, Z.Wei, J. Phys. Chem. C, 8, 8062 (2010).
https://doi.org/10.1021/jp9113255
 
2. K.Zhang, L.L.Zhang, X.S.Zhao, J.Wu, Chem. Mater., 8, 1392 (2010).
https://doi.org/10.1021/cm902876u
 
3. J.Huang, S.Virji, B.H.Weiller, R.B.Kaner, J. Am. Chem. Soc., 8, 314 (2003).
https://doi.org/10.1021/ja028371y
 
4. L.Athouel, F.Moser, R.Dugas et al., J. Phys. Chem. C, 8, 7270 (2008).
https://doi.org/10.1021/jp0773029
 
5. S.Devaraj, N.Munichandraiah, J. Phys. Chem. C, 8, 4406 (2008).
https://doi.org/10.1021/jp7108785
 
6. O.P.Olasyuk, O.P.Dmytrenko, M.P.Kulish et al., Functional Materials, 24, 563 (2017).
https://doi.org/10.15407/fm24.04.563
 
7. Chen Jian-bing, Li Zhun-zhun, Xu Nan, Funct. Mater., 25, 93 (2018).
https://doi.org/10.15407/fm25.01.093
 
8. J.W.Long, M.B. Sassin, A.E.Fischer, D.R.Rolison, J. Phys. Chem. C, 8, 17595 (2009).
https://doi.org/10.1021/jp9070696
 
9. S.Chen, J.Zhu, X.Wu et al., ACS Nano., 8, 2822 (2010).
https://doi.org/10.1021/nn901311t
 
10. F.J.Liu, Synth. Met., 8, 1896 (2009).
https://doi.org/10.1016/j.synthmet.2009.05.012
 
11. R.G.Chaudhuri, S.Paria, Chem. Rev., 8, 2373 (2012).
https://doi.org/10.1021/cr100449n
 
12. H.X.He, C.Z.Li, N.Tao, J. Appl. Phys. Lett., 8, 811 (2001).
 
13. S.C.Vella Durai, E.Kumar, J. Ovonic Res., 16, 173 (2020).
 
14. E.Kumar, S.C.Vella durai, L.Guru Prasad et al,, J. Mater. Environ. Sci., 8, 3490 (2017).
 
15. A.Mostafaei, A.Zolriasatein, Prog. Nat. Sci.:Mater. Int., 22, 273 (2012).
https://doi.org/10.1016/j.pnsc.2012.07.002
 
16. S.C.Vella Durai, E.Kumar, D.Muthuraj, V.Bena Jothy, J. Nano-Electron. Phys., 12, 03011 (2020).
https://doi.org/10.21272/jnep.12(3).03011
 
17. S.F.Cherif, A.Cherif, W.Dridi, M.F.Zid, Arabian J. Chem., 13, 5627 (2020).
https://doi.org/10.1016/j.arabjc.2020.04.003
 
18. H.Nithya, S.Selvasekarapandian, D.Arun Kumar et al., Mater. Chem. Phys., 126, 404 (2011).
https://doi.org/10.1016/j.matchemphys.2010.10.047
 
19. R.Mishra, N.Baskaran, P.A.Ramakrishnan, K.J.Rao, Solid State Ionics, 112, 261 (1998).
https://doi.org/10.1016/S0167-2738(98)00209-4
 
20. K.A.Mauritz, Macromolecules, 22, 4483 (1989).
https://doi.org/10.1021/ma00202a018
 
21. A.Kyritsis, P.Pissis, J.Grammatikakis, J. Polym, Sci. Part B : Polym. Phys., 33, 1737 (1995).
https://doi.org/10.1002/polb.1995.090331205
 
22. J.Malathi, M.Kumaravadivel, G.M.Brahmanandhan et al., J. Non-Cryst. Solids, 356, 2277 (2010).
https://doi.org/10.1016/j.jnoncrysol.2010.08.011
 
23. K.Dutta, S.K.De, J. Appl. Phys., 102, 084110 (2007).
https://doi.org/10.1063/1.2798982
 
24. H.Nithya, S.Selvasekarapandian, P.Christopher Selvin et al., Electrochim. Acta, 66, 110 (2012).
https://doi.org/10.1016/j.electacta.2012.01.056
 
25. S.Selvasekarapandian, M.Vijayakumar, Mater. Chem. Phys., 80, 29 (2003).
https://doi.org/10.1016/S0254-0584(02)00510-2
 
26. S.Vijayalakshmi, Intern. J. Engin. Res. Computer Sci. Engin., 5, 750 (2018).
 
27. Fanhui Meng, Xiuling Yan, Ye Zhu, Pengchao Si, Nanoscale Res. Lett., 8, 179 (2013).
https://doi.org/10.1186/1556-276X-8-179
 

 

Current number: