Funct. Mater. 2021; 28 (3): 475-480.

doi:https://doi.org/10.15407/fm28.03.475

Wetting and interfacial interaction in TiCrC-Ni system

A.P.Umanskyi, A.Ye.Terentiev, M.S.Storozhenko, G.A.Baglyuk, V.B.Muratov, O.O.Vasiliev, V.Ye.Sheludko

Frantsevich Institute for Problems in Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03142 Kyiv, Ukraine

Abstract: 

Wetting and interfacial interaction between the titanium-chromium carbide and molten nickel were investigated by sessile drop technique in vacuum environment at a temperature of 1500°C. Molten nickel shows excellent wetting of TiCrC, forming the contact angle θ = 8°. The interfacial interaction in the TiCrC-Ni system involves the dissolution and infiltration of the ceramic substrate along grain boundaries with Ni to a depth of 400-600 μm. The diffusion of Ti, Cr, and C from the ceramic substrate into molten nickel leads to a change in the chemical composition of the drop. Upon cooling, the recrystallization of titanium and chromium carbides occurs with the formation of new phases TiCx-Cr, Cr3C2-Ti and Cr7C3-Ni-Ti in the drop and the interaction zone. Thus, the TiCrC ceramics can be successfully used to develop the cermets in combination with Ni as a matrix or binder. However, in the manufacture of composite materials TiCrC-Ni, it is necessary to take into account the interaction between TiCrC and Ni with a subsequent change in their chemical composition.

Keywords: 
titanium-chromium carbide, cermet, nickel, wetting, contact angle, interaction zone.
References: 
1. K.K.Chawla, Composite Materials: Science & Engineering, 3rd edition, Springer, New York (2012).
 
2. D.K.Rajak, D.D.Pagar, R.Kumar et al., J. Mater. Res. Techn., 8, 6354 (2019).
https://doi.org/10.1016/j.jmrt.2019.09.068
 
3. A.J.Ruys. 8-Cemented Carbides and Cermets. In: Elsevier Series on Advanced Ceramic Materials, Metal-Reinforced Ceramics, Woodhead Publishing, 285 (2021).
https://doi.org/10.1016/B978-0-08-102869-8.00008-2
 
4. J.Garcia, V.C.Cipres, A.Blomqvist, B.Kaplan, Int. J. Refract. Met. Hard Mater., 80, 40 (2019).
https://doi.org/10.1016/j.ijrmhm.2018.12.004
 
5. J.He, J.M.Schoenung, Surf. Coat. Technol., 157, 72 (2002).
https://doi.org/10.1016/S0257-8972(02)00141-X
 
6. B.Wang, Z.Wang, J.Yuan et al., Int. J. Refract. Met. Hard Mater., 95, 105428 (2021).
https://doi.org/10.1016/j.ijrmhm.2020.105428
 
7. A.Rajabi, M.J.Ghazali, A.R.Daud, Mater. Design, 67, 95 (2015).
https://doi.org/10.1016/j.matdes.2014.10.081
 
8. S.Zhang, Mater. Sci., 163, 141 (1993).
https://doi.org/10.1016/0921-5093(93)90588-6
 
9. A,Panasyuk, O.Umanskyi, M.Storozhenko, V.Akopyan, Key Engin. Mater., 527, 9 (2013).
https://doi.org/10.4028/www.scientific.net/KEM.527.9
 
10. M.S.Storozhenko, A.P.Umanskii, V.A.Lavrenko et al., Powder Metall Met. Ceram., 50, 719 (2012).
https://doi.org/10.1007/s11106-012-9381-x
 
11. J.Kubarsepp, K.Juhani, Int. J. Refract. Met. Hard Mater., 92, 10529 (2020).
https://doi.org/10.1016/j.ijrmhm.2020.105290
 
12. V.A.Tracey, Int. J. Refract. Met. Hard Mater., 11, 137 (1992).
https://doi.org/10.1016/0263-4368(92)90056-8
 
13. M.Razavi, M.S.Yaghmaee, M.R.Rahimipour, S.S.Razavi Tousi, Int. J. Miner. Process., 94, 97 (2010).
https://doi.org/10.1016/j.minpro.2010.01.002
 
14. B.Li, Y.Liu, J.Li et al., J. Mater. Proc. Technol., 210, 91 (2010).
https://doi.org/10.1016/j.jmatprotec.2009.08.008
 
15. A.Jam, L.Nikzad, M.Razavi, Ceram. Int., 43, 2448 (2017).
https://doi.org/10.1016/j.ceramint.2016.11.039
 
16. O.Umanskyi, M.Storozhenko, M.Antonov et al., Key Engin. Mater., 799, 37 (2019).
https://doi.org/10.4028/www.scientific.net/KEM.799.37
 
17. S.N.Basu, V.K.Sarin, Mater. Sci. Eng. A, 209, 206 (1996).
https://doi.org/10.1016/0921-5093(95)10145-4
 
18. V.B.Voitovich, V.V.Sverdel, R.F.Voitovich, E.I.Golovko, Int. J. Refract. Met. Hard Mater., 14, 289 (1996).
https://doi.org/10.1016/0263-4368(96)00009-1
 
19. G.Bolelli, A.Colella, L.Lusvarghi et al., Wear, 450-451, 203273 ( 2020).
https://doi.org/10.1016/j.wear.2020.203273
 
20. I.N.Gorbatov, V.M.Shkiro, A.E.Terentyev, J. Phys. Chem. Mater. Treat., 4, 102 (1991).
 
21. A.P.Umanskii, V.A.Lavrenko, S.S.Chuprov et al., Powder Metall Met. Ceram, 48, 607 (2009).
https://doi.org/10.1007/s11106-010-9174-z
 
22. O.Umanskyi, M.Storozhenko, G.Baglyuk et al., Powder Metall Met. Ceram, 59, 434 (2020).
https://doi.org/10.1007/s11106-020-00177-y
 
23. Bu QianWang, Wear, 225, 502 (1999).
https://doi.org/10.1016/S0043-1648(98)00375-5
 
24. G.N.Komratov, Powder Metall. Met. Ceram., 39, 67 (2000).
https://doi.org/10.1007/BF02677445
 
25. R.Mitra, Y.Mahajan, Bull. Mater. Sci., 18, 405 (1995).
https://doi.org/10.1007/BF02749771
 
26. A.Passerone, F.Valenza, M.Muolo, Mater. Sci. Forum, 884, 132 (2017).
https://doi.org/10.4028/www.scientific.net/MSF.884.132
 
27. F.Delannay, L.Froyen, A.Deruyttere, J. Mater. Sci., 22, 1 (1987).
https://doi.org/10.1007/BF01160545
 
28. P.Baumli, Metals, 10, 1 (2020).
https://doi.org/10.3390/met10101400
 
29. Q.Lin, R.Sui, J. Alloys Compd., 649, 505 (2015).
https://doi.org/10.1016/j.jallcom.2015.07.138
 
30. S.V. Dudiy, B.I.Lundqvist, Phys. Rev. B, 69, 125421 (2004).
https://doi.org/10.1103/PhysRevB.69.125421
 
31. Jian-Guo Li, Mater. Lett., 17, 74 (1993).
https://doi.org/10.1016/0167-577X(93)90151-M
 
32. E.A.Aguilar, C.A.Leon, A.Contreras et al., Composites Part A: Appl. Sci. Manufact., 33, 1425 (2002).
https://doi.org/10.1016/S1359-835X(02)00160-4
 
33. N.Frage, N.Froumin, M.Aizenshtein et al., Curr. Opin. Solid State Mater. Sci., 9, 189 (2005).
https://doi.org/10.1016/j.cossms.2006.02.008
 
34. O.P.Umanskyi, M.V.Pareiko, M.S.Storozhenko, V.P.Krasovskyy, Journal of Superhard Materials, 39, 99 (2017).
https://doi.org/10.3103/S1063457617020046
 
35. A.E.Terentiev, Functional Materials, 26, 507 (2019).
 
36. A.P.Umansky, V.P.Konoval, A.D.Panasyuk, I.P.Neshpor, Adhes. Melts Brazing Mater., 38, 51 (2005).

Current number: