Funct. Mater. 2021; 28 (3): 492-496.

doi:https://doi.org/10.15407/fm28.03.492

Low temperature elastic properties of Al0.5CoCrCuFeNi high-entropy alloy

O.S.Bulatov, V.S.Klochko, A.V.Korniyets, I.V.Kolodiy, O.O.Kondratov, T.M.Tikhonovska

National Scientific Center "Kharkiv Institute of Physics and Technology", National Academy of Sciences of Ukraine, 1 Academichna Str., 61108 Kharkiv, Ukraine

Abstract: 

The independent c11, c44, and c12 elastic constants of Al0.5CoCrCuFeNi high-entropy alloy with the fcc structure were experimentally determined by the ultrasonic spectroscopy method in temperature region from 77 to 300 K. The results were obtained on samples with an axial [100] and [111] growth textures. Temperature changes in Young modulus, shear modulus, volume modulus, Poisson's ratio, Pugh's index and the elastic anisotropy factor were determined. The Pugh's index values are in the range between 1.26 (77 K) and 1.60 (300 K), which indicates the relatively low alloy ductility at low temperatures. Negative values of the Cauchy pressure c12 - c44 are possibly caused by the influence of a relatively strong directed interatomic bond in a disordered solid solution, which is a high-entropy alloy.

Keywords: 
high-entropy alloy, elastic constants, elastic anisotropy, ultrasonic studies.
References: 
1. Y.F.Kao, T.J.Chen, S.K.Chen, J.W.Yeh, J. Alloy. Compound, 488, 57 (2009).
https://doi.org/10.1016/j.jallcom.2009.08.090
 
2. C.Y.Hcu, C.C.Juan, T.S.Shen et al., JOM, 65, 1840 (2013).
https://doi.org/10.1007/s11837-013-0753-6
 
3. J.Y.He, W.H.Liu, H.Wang et al., Acta Mater., 62, 105 (2014).
https://doi.org/10.1016/j.actamat.2013.09.037
 
4. C.J.Iin, J.T.Tong et al., Metall. Mater. Trans., A 36, 881 (2005).
https://doi.org/10.1007/s11661-005-0283-0
 
5. Y.X.Zhuang, W.J.Liu, Z.Y.Chen et al., Mater. Sci. Eng., A 556, 395 (2012).
https://doi.org/10.1016/j.msea.2012.07.003
 
6. C.J.Tong, M.R.Chen, S.K.Chen et al., Metall. Mater. Trans., A 36, 1263 (2005).
https://doi.org/10.1007/s11661-005-0218-9
 
7. N.G.Jones, A.Frezza, H.J.Stone, Mater. Sci. Eng., A 615, 214 (2014).
https://doi.org/10.1016/j.msea.2014.07.059
 
8. V.M.Nadulov, O.I.Zaporozhets, S.Yu.Makarenko et al., Metallofiz. Noveishie Technol., 39, 621 (2013).
 
9. Yu.A.Semerenko, E.D.Tabachnikova, T.M.Tikhonovska et al., Metallofiz. Noveishie Technol., 37, 1527 (2015).
https://doi.org/10.15407/mfint.37.11.1527
 
10. M.V.Ivchenko, V.G.Pushyn, N.Wanderka, J. Tech. Phys., 84, 57 (2014).
 
11. E.D.Tabachnikova, M.A.Lactionova, Yu.A.Semerenko et al., Low Temp. Phys., 43, 1381 (2017).
https://doi.org/10.1063/1.5004457
 
12. R.Hill, Proc. Phys. Soc. , A 65, 349 (1952).
https://doi.org/10.1088/0370-1298/65/5/307
 
13. S. F. Pugh, Phyl. Mag. , 45, 823 (1954).
https://doi.org/10.1080/14786440808520496
 
14. Katsushi Tanaka, Takeslu Teramoto, Ryo Ito, NBS Advances, 2, 1425 (2017).
https://doi.org/10.1557/adv.2017.76
 
15. Takeshi Teramoto, Kazuki Yamado, Ryo Ito, Katsushi Tanaka, J. Alloy. Compound, 777, 1313 (2019).
https://doi.org/10.1016/j.jallcom.2018.11.052

Current number: