Funct. Mater. 2021; 28 (3): 512-517.

doi:https://doi.org/10.15407/fm28.03.512

Effect of sodium chloride on the solubility and transformation behavior of L-glutamic acid

Fei Lu, Yuan-Sheng Ding

School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 132022 Jilin, P.R.China

Abstract: 

The effect of NaCl concentration on the kinetics and thermodynamics of L-glutamic acid have been studied. The solubility of each glutamic acid polymorph in the NaCl solution was determined by the gravimetric method; the quantity of each polymorph was determined by the spectral method. The behavior of the polymorphic transformation has also been investigated using Raman and imaging techniques. The particle size of L-glutamic acid during the polymorphic transformation process was measured using a laser particle size analyzer. Experimental data show that NaCl affects the polymorphism of L-glutamic acid. In aqueous solutions without additives at temperatures below 30°C, the alpha form of glutamic acid is spontaneously generated, while in the presence of NaCl, the alpha form is rapidly converted to the beta form.

Keywords: 
L-Glutamic acid, sodium chloride, polymorphism, solubility, Raman spectra.
References: 
1. A.Nangia, Accounts Chem. Res., 41. 595 (2008).
https://doi.org/10.1021/ar700203k
 
2. A.A.Bredikhin, D.V.Zakharychev, A.T.Gubaidullin et al., J. Cryst. Growth Design., 18, 6627 (2018).
https://doi.org/10.1021/acs.cgd.8b00874
 
3. H.Choi, M.Inoue, R.Sengoku, Constr. Build. Mater., 188, 1 (2018).
https://doi.org/10.1016/j.conbuildmat.2018.08.045
 
4. M.T.Ruggiero, J.A.Zeitler, T.M.Korter, Phys. Chem. Chem. Phys., 19, 285 (2017).
https://doi.org/10.1039/C7CP04666A
 
5. E.Schur, E.Nauha, M.Lusi et al., Chemistry-A Eur. J., 21, 1735 (2015).
https://doi.org/10.1002/chem.201404321
 
6. T.T.C.Lai, S.Ferguson, L.Palmer et al., Org. Proc. Res. Devel., 18, 1382 (2014).
https://doi.org/10.1021/op500171n
 
7. X.Ni, A.Liao, J. Cryst. Growth Design, 8, 2875 (2008).
https://doi.org/10.1021/cg7012039
 
8. S.Liang, X.Duan, X.Zhang et al., J. Cryst. Growth Design,, 15, 3602 (2015).
https://doi.org/10.1021/cg501833u
 
9. H.Wu, N.Reeves-McLaren, S.Jones et al., J. Cryst. Growth Design,, 10, 988 (2009).
https://doi.org/10.1021/cg901303a
 
10. A.Hernik, W.Pulawski, B.Fedorczyk et al., Langmuir, 31, 10500 (2015).
https://doi.org/10.1021/acs.langmuir.5b02915
 
11. Z.Cai, T.Liu, Y.Song et al., J. Cryst. Growth, 461, 1 (2017).
https://doi.org/10.1016/j.jcrysgro.2016.12.103
 
12. S.A.Raina, G.G.Z.Zhang, D.E.Alonzo et al., Pharm. Res., 32, 3350 (2015).
https://doi.org/10.1007/s11095-015-1712-4
 
13. A.Rao, Y.C.Huang, H.Colfen, J. Phys. Chem. C, 121, 21641 (2017).
https://doi.org/10.1021/acs.jpcc.7b02635
 
14. P.Manimunda, S.A.S.Asif, M.K.Mishra, Chem. Commun., 55, 9200 (2019).
https://doi.org/10.1039/C9CC04538D
 
15. M.Motoyama, M.Ando, K.Sasaki et al., Food Chem., 196, 411 (2016).
https://doi.org/10.1016/j.foodchem.2015.09.043
 
16. C.Jiang, J.Yan, Y.Wang et al., Ind. Engin. Chem. Res., 54, 11222 (2015).
https://doi.org/10.1021/acs.iecr.5b03023
 
17. M.Kitamura, J. Cryst. Growth, 96, 541 (1989).
https://doi.org/10.1016/0022-0248(89)90049-3
 
18. Z.Li, Ind. Engin. Chem. Res., 45, 2914 (2006).
https://doi.org/10.1021/ie0508280
 
19. Z.H.Ansari, Z.Li, J. Chem. Engin. Data, 61, 3488 (2016).
https://doi.org/10.1021/acs.jced.6b00403
 
20. C.Cashell, D.Corcoran, B.K.Hodnett, Chem. Commun., 9, 374 (2003).
https://doi.org/10.1039/b210400h
 
21. M.Kitamura, T.Ishizu, J. Cryst. Growth, 209, 138 (2000).
https://doi.org/10.1016/S0022-0248(99)00508-4

Current number: