Funct. Mater. 2021; 28 (3): 525-532.

doi:https://doi.org/10.15407/fm28.03.525

A microscopic model of drugs penetration into lipid membranes

R.Ye.Brodskii1,2, O.V.Vashchenko3

1Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

The problem of interactions between complex ordered media and admixture molecules is a challenge of modern material science. In the case of interactions between lipid membrane medium and drugs, the problem gains important biological sense. The present work is aimed to develop a microscopic model for characterization drug penetration into lipid bilayer membrane. The model considers the balance between elastic ("drowing out") and dispersion ("drowing in") components of "membrane - drug" interactions which defines the equilibrium depth of drug penetration and describes properly such features as penetration to a certain depth, accumulation of drug molecules at the center of the membrane, as well as the absence of penetration. It helps to establish common physical basis of a set of experimental results obtained for these systems, including V-shape dependences "membrane melting temperature vs. the depth of penetration" as well as "specific membranotropic effect of a drug molecule vs. its lipophilicity", etc.

Keywords: 
mathematic model, lipid membranes, drugs, elastic interactions, dispersion interactions.
References: 
1. A.M.Seddon, D.Casey, R.V.Law et al., Chem. Soc. Rev., 38, 2509 (2009).
https://doi.org/10.1039/b813853m
 
2. V.G.Ivkov, G.N.Berestovskiy, Dynamic Structure of a Lipid Bilayer, Nauka, Moscow (1981) [in Russian].
 
3. O.V.Vashchenko, N.A.Kasian, R.Ye.Brodskii et al., Functional Materials, 25, 3 (2018).
 
4. M.K.Jain, Proc. INSA, 45A, 6 (1979).
 
5. H.G.L.Coster, J. Biol. Phys., 29, 363 (2003).
https://doi.org/10.1023/A:1027362704125
 
6. D.Marsh, Biochim. Biophys. Acta., 1286, 183 (1996).
https://doi.org/10.1016/S0304-4157(96)00009-3
 
7. Method of Spin Lables and Zondes. Problems and Perspectives, Nauka, Moscow (1986) [in Russian].
 
8. E.Falck, M.Patra, M.Karttunen et al., Biophys. J., 87, 1076 (2004).
https://doi.org/10.1529/biophysj.104.041368
 
9. O.A.Pinto, E.A.Disalvo, PLoS ONE, 14, 4 (2019).
https://doi.org/10.1371/journal.pone.0212269
 
10. A.L.Rabinovich, N.K.Balabaev, M.G.Alinchenko et al., J. Chem. Phys., 122, 84906 (2005).
https://doi.org/10.1063/1.1850903
 
11. M.Kupiainen, E.Falck, S.Ollila et al., J. Computat. Theor. Nanosci., 2, 1546 (2005).
https://doi.org/10.1166/jctn.2005.211
 
12. N.Kucerka, F.A.Heberle, J.Pan et al., Membranes, 5, 180 (2015).
https://doi.org/10.3390/membranes5030454
 
13. H.M.Seeger, M.L.Gudmundsson, T.Heimburg, J. Phys. Chem. B, 111, 49 (2007).
https://doi.org/10.1021/jp075346b
 
14. A.A.Askadskij, V.I.Kondrashenko, Computerized Material Science of Polymers, Nauchnyi Mir, Moscow (1999) [in Russian].
 
15. D.Casey, K.Charalambous, A.Gee et al., J. R. Soc. Interface, 11, (2014).
https://doi.org/10.1098/rsif.2013.1062
 
16. F.Castelli, D.Micieli, S.Ottimo et al., Chemosphere, 73, 1108 (2008).
https://doi.org/10.1016/j.chemosphere.2008.07.023
 
17. P.G.Barton, F.D.Gunstone, J. Biol. Chem., 250, 12 (1975).
https://doi.org/10.1016/S0021-9258(19)41327-6
 
18. D.Chapman, J.Urbina, J. Biol. Chem., 249, 8 (1974).
https://doi.org/10.1016/S0021-9258(19)42760-9
 
19. J.M.Sturtevant, Ann. Rev. Phys. Chem., 38, 463 (1987).
https://doi.org/10.1146/annurev.pc.38.100187.002335
 
20. S.M.Ohline, M.L.Campbell, M.T.Turnbull et al., J. Chem. Ed., 78, 9 (2001).
https://doi.org/10.1021/ed078p1251
 
21. T.M.Mavromoustakos, Methods Mol. Biol., 400, 587 (2007).
https://doi.org/10.1007/978-1-59745-519-0_39
 
22. O.Vashchenko, V.Pashynska, M.Kosevich et al., Mol. Cryst. Liq. Cryst., 547, 155 (2011).
https://doi.org/10.1080/15421406.2011.572038
 
23. A.O.Sadchenko, O.V.Vashchenko, N.A.Kasian et al., Func. Mater., 23, 2 (2016).
 
24. L.N.Lisetski, A.O.Krasnikova, S.I.Torgova, Mol. Cryst. Liq. Cryst., 623, 113 (2015).
https://doi.org/10.1080/15421406.2015.1017263
 
25. M.Kupiainen, E.Falck, S.Ollila et al., J. Comput. Theor. Nanosci., 2, 1546 (2005).
https://doi.org/10.1166/jctn.2005.211
 
26. E.Axpe, A.B.Garcia-Arribas, J.I.Mujika et al., RSC Advances., 5, 55 (2015).
https://doi.org/10.1039/C5RA05142H
 
27. N.Kucerka, J.F.Nagle, J.N.Sachs et al., Biophys. J., 95, 2356 (2008).
https://doi.org/10.1529/biophysj.108.132662
 
28. N.Kucerka, M.-P.Nieh, J.Katsaras, Biochim. Biophys. Acta, 1808, 2761 (2011).
https://doi.org/10.1016/j.bbamem.2011.07.022
 
29. A.L.Rabinovich, N.K.Balabaev, M.G.Alinchenko et al., J. Chem. Phys., 122, 84906 (2005).
https://doi.org/10.1063/1.1850903
 
30. J.K.Seydel, M.Wiese, Drug-membrane Interactions: Analysis, Drug Distribution, Modeling. Wiley-VCH Verlag GmbH, Weinheim (2002).
https://doi.org/10.1002/3527600639

Current number: