Funct. Mater. 2021; 28 (3): 533-541.

doi:https://doi.org/10.15407/fm28.03.533

Efficiency of planar light converters based on Al2O3-YAG:Ce eutectic crystals

S.V.Naydenov, O.M.Vovk, Yu.V.Siryk, S.V.Nizhankovskyi, I.M.Pritula

Institute for Single Crystals, STC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

A theoretical model of crystalline converter of white light with internal scattering medium is proposed. Obtained are the expressions for estimation of the light converter efficiency depending on its optical parameters (refractive index and coefficients of absorption at the wavelengths of incident and re-emitted light), as well as on the geometrical dimensions and the scattering indicatrix of the optical system. The physical limits of improvement of the converter efficiency due to strong internal scattering are established. Realized are the theoretical and experimental estimations of the efficiency of the light converter based on the crystals of Al2O3-YAG:Ce eutectic alloy which amounts to 16 %. This is twice as high in comparison with the efficiency of the light converter based on YAG:Ce single crystal.

Keywords: 
light converter, luminous efficiency, total internal reflection, Ce-doped single crystals, eutectics Al<sub>2</sub>O<sub>3</sub>-YAG:Ce, WLED.
References: 
1. L.Chen, C.-C.Lin, C.-W.Yeh, R.-S.Liu, Materials, 3, 2172 (2010).
https://doi.org/10.3390/ma3032172
 
2. X.Ma, X.Li, J.Li et al., Nature Commun., 9, 1175 (2018).
https://doi.org/10.1038/s41467-018-03467-7
 
3. Y.Yuan, D.Wang, B.Zhou et al., Opt. Mater. Express, 8, 2760 (2018).
https://doi.org/10.1364/OME.8.002760
 
4. Q.-Q.Zhu, S.Li, Q.Yuan et al., J. Europ. Ceram. Soc., 41, 735 (2021).
https://doi.org/10.1016/j.jeurceramsoc.2020.09.006
 
5. Q.-Q.Zhu, Y.Meng, H.Zhang et al., ACS Appl. Electron. Mater., 2, 2644 (2020).
https://doi.org/10.1021/acsaelm.0c00512
 
6. A.Revaux, G.Dantelle, S.Brinkley et al., Proc. SPIE, 8102, 81020R-1 (2011).
 
7. Y.R.Tang, S.M.Zhou, X.Z.Yi et al., Opt. Lett., 40, 5479 (2015).
https://doi.org/10.1364/OL.40.005479
 
8. G.Singh, D.S.Mehta, J. Inform. Display, 15, 91 (2014).
https://doi.org/10.1080/15980316.2014.903211
 
9. D.Huh, W Kim, K.Kim et al., Nanotechnology, 31, 144003 (2019).
https://doi.org/10.1088/1361-6528/ab667e
 
10. Y.Tang, S.Zhou, C.Chen et al., Opt. Express, 23, 17923 (2015).
https://doi.org/10.1364/OE.23.017923
 
11. Q.Sai, Z.Zhao, C.Xia et al., Opt. Mater., 35, 2155 (2013).
https://doi.org/10.1016/j.optmat.2013.05.035
 
12. S.Yamada, M.Yoshimura, S.Sakata et al., J. Cryst. Growth, 448, 1 (2016).
https://doi.org/10.1016/j.jcrysgro.2016.05.003
 
13. Y.Liu, M.Zhang, Y.Nie et al., J. Europ. Ceram. Soc., 37, 4931 (2017).
https://doi.org/10.1016/j.jeurceramsoc.2017.06.014
 
14. Y.Nie, J.Han, Y.Liu et al., Mater. Sci. Engin. A, 704, 207 (2017).
https://doi.org/10.1016/j.msea.2017.07.098
 
15. U.S. Patent US 2012/0181919 A1 (2012).
 
16. EU Patent EP1837921 A1 (2015).
 
17. K.Katrunov, V.Ryzhikov, V.Gavrilyuk et al., Nucl. Instrum. Meth. Phys. Res.:Sect. A, 712, 126 (2013).
https://doi.org/10.1016/j.nima.2013.01.065
 
18. Yu.A.Tsirlin, Light Collection in Scintillation Counters, Atomizdat, Moscow (1975) [in Russian].
 
19. S.V.Naydenov, Techn. Phys., 49, 1093 (2004).
https://doi.org/10.1134/1.1787678
 
20. V.G.Baryakhtar, V.V.Yanovsky, S.V.Naydenov, A.V.Kurilo, J. Experim. Theoret. Phys., 103, 292 (2006).
https://doi.org/10.1134/S1063776106080127
 
21. S.V.Naydenov, J. Appl. Spectroscopy, 69, 613 (2002).
https://doi.org/10.1023/A:1020624720252
 
22. S.V.Nizhankovsky, A.Ya.Dan'ko, V.M.Puzikov et al., Functional Materials, 15, 546 (2008)
 
23. S.V.Naydenov, B.V.Grinyov, V.D.Ryzhikov, in: IEEE Symposium Conf. Record Nuclear Sci. 2004, Rome, Italy (2004), vol.2, 810.
 
24. S.V.Nizhankovskyi, A.V.Tan'ko, Y.N.Savvin et al., Opt. Spectrosc., 120, 915 (2016).
https://doi.org/10.1134/S0030400X16050210
 

Current number: