Funct. Mater. 2021; 28 (3): 533-541.
Efficiency of planar light converters based on Al2O3-YAG:Ce eutectic crystals
Institute for Single Crystals, STC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
A theoretical model of crystalline converter of white light with internal scattering medium is proposed. Obtained are the expressions for estimation of the light converter efficiency depending on its optical parameters (refractive index and coefficients of absorption at the wavelengths of incident and re-emitted light), as well as on the geometrical dimensions and the scattering indicatrix of the optical system. The physical limits of improvement of the converter efficiency due to strong internal scattering are established. Realized are the theoretical and experimental estimations of the efficiency of the light converter based on the crystals of Al2O3-YAG:Ce eutectic alloy which amounts to 16 %. This is twice as high in comparison with the efficiency of the light converter based on YAG:Ce single crystal.
1. L.Chen, C.-C.Lin, C.-W.Yeh, R.-S.Liu, Materials, 3, 2172 (2010). https://doi.org/10.3390/ma3032172 |
||||
2. X.Ma, X.Li, J.Li et al., Nature Commun., 9, 1175 (2018). https://doi.org/10.1038/s41467-018-03467-7 |
||||
3. Y.Yuan, D.Wang, B.Zhou et al., Opt. Mater. Express, 8, 2760 (2018). https://doi.org/10.1364/OME.8.002760 |
||||
4. Q.-Q.Zhu, S.Li, Q.Yuan et al., J. Europ. Ceram. Soc., 41, 735 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.006 |
||||
5. Q.-Q.Zhu, Y.Meng, H.Zhang et al., ACS Appl. Electron. Mater., 2, 2644 (2020). https://doi.org/10.1021/acsaelm.0c00512 |
||||
6. A.Revaux, G.Dantelle, S.Brinkley et al., Proc. SPIE, 8102, 81020R-1 (2011). | ||||
7. Y.R.Tang, S.M.Zhou, X.Z.Yi et al., Opt. Lett., 40, 5479 (2015). https://doi.org/10.1364/OL.40.005479 |
||||
8. G.Singh, D.S.Mehta, J. Inform. Display, 15, 91 (2014). https://doi.org/10.1080/15980316.2014.903211 |
||||
9. D.Huh, W Kim, K.Kim et al., Nanotechnology, 31, 144003 (2019). https://doi.org/10.1088/1361-6528/ab667e |
||||
10. Y.Tang, S.Zhou, C.Chen et al., Opt. Express, 23, 17923 (2015). https://doi.org/10.1364/OE.23.017923 |
||||
11. Q.Sai, Z.Zhao, C.Xia et al., Opt. Mater., 35, 2155 (2013). https://doi.org/10.1016/j.optmat.2013.05.035 |
||||
12. S.Yamada, M.Yoshimura, S.Sakata et al., J. Cryst. Growth, 448, 1 (2016). https://doi.org/10.1016/j.jcrysgro.2016.05.003 |
||||
13. Y.Liu, M.Zhang, Y.Nie et al., J. Europ. Ceram. Soc., 37, 4931 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.06.014 |
||||
14. Y.Nie, J.Han, Y.Liu et al., Mater. Sci. Engin. A, 704, 207 (2017). https://doi.org/10.1016/j.msea.2017.07.098 |
||||
15. U.S. Patent US 2012/0181919 A1 (2012). | ||||
16. EU Patent EP1837921 A1 (2015). | ||||
17. K.Katrunov, V.Ryzhikov, V.Gavrilyuk et al., Nucl. Instrum. Meth. Phys. Res.:Sect. A, 712, 126 (2013). https://doi.org/10.1016/j.nima.2013.01.065 |
||||
18. Yu.A.Tsirlin, Light Collection in Scintillation Counters, Atomizdat, Moscow (1975) [in Russian]. | ||||
19. S.V.Naydenov, Techn. Phys., 49, 1093 (2004). https://doi.org/10.1134/1.1787678 |
||||
20. V.G.Baryakhtar, V.V.Yanovsky, S.V.Naydenov, A.V.Kurilo, J. Experim. Theoret. Phys., 103, 292 (2006). https://doi.org/10.1134/S1063776106080127 |
||||
21. S.V.Naydenov, J. Appl. Spectroscopy, 69, 613 (2002). https://doi.org/10.1023/A:1020624720252 |
||||
22. S.V.Nizhankovsky, A.Ya.Dan'ko, V.M.Puzikov et al., Functional Materials, 15, 546 (2008) | ||||
23. S.V.Naydenov, B.V.Grinyov, V.D.Ryzhikov, in: IEEE Symposium Conf. Record Nuclear Sci. 2004, Rome, Italy (2004), vol.2, 810. | ||||
24. S.V.Nizhankovskyi, A.V.Tan'ko, Y.N.Savvin et al., Opt. Spectrosc., 120, 915 (2016). https://doi.org/10.1134/S0030400X16050210 |
||||