Funct. Mater. 2021; 28 (3): 564-572.


Dependence of kinetics of composite material gel formation in the system Li2O-Al2O3-SiO2 on the conditions of technological process


State Higher Educational Institution "Ukrainian State Chemical Technology University", 8 Gagarina Ave., 49005 Dnipro, Ukraine


The paper deals with the influence of the technological process conditions on the kinetics of formation of the composite material of the system Li2O-Al2O3-SiO2 using sol-gel method. The optimal amounts of catalyst and water for gel formation in the system of a given composition have been established. The physical and chemical processes occurring during heat treatment of the obtained glasslike material have been studied in order to ensure the conditions for maintaining its stable state. It is found that the composite semi-finished product fired at the temperature of 780-800°C does not require special conditions of storage for a long time. The obtained composite material can be used for the manufacturing of structural glass ceramics using the ceramic powder technology. However, sintering of such lithium-aluminosilicate glass ceramics takes place at the temperatures being 90-100°C lower compared to glass ceramics of similar composition, which is traditionally obtained from specially made glass. The proposed technology significantly reduces energy costs related to production of eucryptite and spodumene glass ceramics.

glass-ceramics, sol-gel method, firing, water absorption, linear coefficient of thermal expansion, eucryptite.
1. E.D.Zanotto, Am. Ceram. Soc. Bull., 89, 19 (2010).
2. A.V.Zaichuk, A.A.Amelina, Y.S.Khomenko et al., Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 52 (2020).
3. O.V.Savvova, O.I.Fesenko, H.K.Voronov, S.O.Riabinin, Nanosistemi, Nanomaterialy, Nanotehnologii, 18, 889 (2020).
4. L.B.Reboucas, M.T.Souza, F.Raupp-Pereira, A.P.Oliveira, Ceramica, 65, 366 (2019).
5. A.V.Nosenko, Y.S.Hordieiev, V.I.Goleus, Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 87 (2018).
6. O.Viviane, O.Peitl, E.Soares, D.Zanotto, J. Amer. Ceram. Soc., 96, 1143 (2013).
7. S.Buchner, V.O.Soares, P.Soares et al., Europ. J. Glass Sci. Technol., A, 54, 211 (2013).
8. Z.Qing, B.Li, S.Zhang, J. Electroceram., 40, 316 (2018).
9. L.Zhien, S.Yihui, D.Xijiang, J. Mater. Sci., 30, 390 (1995).
10. R.Krsmanovic, S.Bals, G.Bertoni, G.V.Tendeloo, J. Opt. Mater., 30, 1183 (2008).
11. O.Khomenko, E.Alekseev, Eastern-European J. Enterprise Technol. Technol. Organ. Inorgan. Subst., 6, 6 (2018).
12. G.D.Semchenko, Modern Processes in the Technology of Structural Ceramics, Gelios, Kharkiv (2011).
13. F.J.Bonner, Sol-Gel Routes to Ceramics and Glasses I. Gels, Springer, Boston, MA (1987).
14. A.E.Danks, S.R.Hall, Z.Schnepp, The Evolution of "Sol-gel" Chemistry as a Technique for Materials Synthesis, Mater. Horiz. (2016).
15. R.A.Lidin, L.L.Andreeva, V.A.Molochko, Constants of Inorganic Compounds, Drofa, Moscow (2006) [in Russian].
16. O.B.Skorodumova, G.D.Semchenko, Ya.N.Goncharenko, V.S.Tolstoj, Steklo i Keramika, 1, 30 (2001).
17. E.S.Khomenko, A.V.Zaichuk, E.V.Karasik, A.A.Kunitsa, Functional Materials, 25, 613 (2018).
18. E.Karasik, R.Marchan, N.Gorulya, Proc. Intern. Astronautical Congress, Washington, IAC (2019).
19. E.V.Karasik, Yu.S.Hordieiev, Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 69 (2020).
20. A.V.Zaichuk, A.A.Amelina, Y.V.Karasik et al., Functional Materials, 26, 174 (2019)
21. I.S.Rez, Yu.M.Poplavko, Dielectrics. Basic Properties and Applications in Electronics, Radio i Svyaz, Moscow (1989) [in Russian].

Current number: