Funct. Mater. 2021; 28 (3): 587-596.

doi:https://doi.org/10.15407/fm28.03.587

Synthesis and study of biological activity of azometins based on ethyl derivatives 4-acetyl-3,5-dimethyl-1H-pyrol-2-carboxylate

E.I.Mikhedkina1, V.V.Ananieva1, A.V.Tsygankov1,3, T.P.Osolodchenko2, S.V.Ponomarenko2, V.A.Chebanov3

1National Technical University "Kharkiv Polytechnic Institute", 2, Kyrpychova Str., 61002 Kharkiv, Ukraine
2Mechnikov Institute of Microbiology and Immunology, 14 Pushkinskaya Str., 61057 Kharkiv, Ukraine
3State Scientific Institution "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Starting from 4-acetyl-3,5-dimethyl-1H-pyrol-2-carboxylate 1, the derivative of chlorovinylaldehyde 4-[(E)-1-chloro-3-oxoprop-1-enyl]-3,5-dimethyl-1H-pyrol-2-carboxylate 2 was synthesized by the Wilsmeier-Haak reaction. Condensation of the aldehyde 2 with aromatic amines (4-substituted anilines and naphthylamine) and with 5-amino-3-(4-bromophenyl(tolyl))-1H-pyrazole(s) in absolute diethyl ether at room temperature for several hours afforded a new series of the corresponding azomethines 3-10. The structures of the synthesized compounds were elucidated by 1H NMR and IR spectroscopy and mass spectrometry. It was shown that all the obtained azomethines 3-10 were individual substances and not a mixture of isomers. Primary studies were carried out to determine the biological activity of the obtained Schiff bases (compounds 3-8). Antibacterial activity was evaluated on reference test cultures and clinical strains. It was found that the resulting azomethines were effective only against Gram-positive bacteria (not broad spectrum of activity). It was suggested that compounds 5, 7 have cytotoxic properties and represent a perspective for modification and further investigation of antitumor activity.

Keywords: 
pyrrole derivatives, 4-acetyl-3,5-dimethyl-1H-pyrrole-2-carboxylate, azomethines, beta-chlorovinyl aldehydes, 5-aminopyrazoles, pharmacophores, biological activity.
References: 
1. L.Wang, W.Qin, X.Tang et al., Phys. Chem. A, 115, 1609 (2011).
https://doi.org/10.1021/jp110305k
 
2. K.Shirai, M.Matsuoka, K.Fukunishi, Dyes and Pigments, 47, 107 (2000).
https://doi.org/10.1016/S0143-7208(00)00068-1
 
3. M,W.Sabaa, R.R.Mohamed, E.H.Oraby, European Polymer Journal, 45, 3072 (2009).
https://doi.org/10.1016/j.eurpolymj.2009.08.018
 
4. N.A.Bertow, S.A.Aowda, M.H.Al-Maamori, Asian J. Chem., 26, 176 (2014).
https://doi.org/10.14233/ajchem.2014.19042
 
5. L.Xu, X.Qi, S.-J.Kim, J. Struct. Chem., 47, 999 (2006).
 
6. G.Roberts, Langmuir-Blodgett Films, Springer, US (1990).
https://doi.org/10.1007/978-1-4899-3716-2
 
7. P.M.Foster, P.M.Thomas, A.K.Cheetham, Chem. Mater., 14, 17 (2002).
https://doi.org/10.1021/cm010820q
 
8. G.Pistolis, D.Gegiou, E.Hadjoudis, J. Photochem. Photobiol. A: Chemistry, 93, 179 (1996).
https://doi.org/10.1016/1010-6030(95)04182-6
 
9. L.Zhao, Q.Hou, D.Sui et al., Spectrochim. Acta A: Mol. Biomol. Spectroscopy, 67, 1120 (2007).
https://doi.org/10.1016/j.saa.2006.09.033
 
10. L.Zhao, D.Sui, J.Chai et al., J. Phys. Chem. B, 110, 24299 (2006).
https://doi.org/10.1021/jp062476w
 
11. R.Sahu, D.Thakur, P.Kashyap, Int. J. Pharm. Sci. Nanotech., 5, 1757 (2012).
 
12. K.Brodowska, E.Lodyga-Chruscinska, Chemik, 68, 129 (2014).
 
13. K.S.Munawar, S.M.Haroon, S.A.Hussain, H.Raza, J. Basic Appl. Sci., 14, 217 (2018).
https://doi.org/10.6000/1927-5129.2018.14.34
 
14. S.S.Gholap, European J. Med. Chem., 110, 13 (2016).
https://doi.org/10.1016/j.ejmech.2015.12.017
 
15. Y.Kanaoka, Y.Ikeuchi, T.Kawamoto et al., Bioorg. Med. Chem., 6, 301 (1998).
https://doi.org/10.1016/S0968-0896(97)10036-0
 
16. A.Bijev, I.Radev, Y.Borisova, Pharmazie, 55, 568 (2000).
 
17. K.Karrouchi, S.Radi, Y.Ramli et al., Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review Molecules, 23, 1 (2018).
https://doi.org/10.3390/molecules23010134
 
18. B.S.Sathe, E.Jaychandran, V.A.Jagtap, G.M.Sreenivasa, IJPRD, 3, 164 (2011).
 
19. A.Pandey, D.Dewangan, S.Verma et al., J. Chem., 9, 178 (2011).
 
20. K.V.Sashidhara, A.Kumar, G.Bhatia et al., Europ. J. Med. Chem., 44, 1813 (2009).
https://doi.org/10.1016/j.ejmech.2008.08.004
 
21. A.A.Kulkarni, S.B.Wankhede, N.D.Dhawale et al., Arabian J. Chem., 10, 184 (2017).
https://doi.org/10.1016/j.arabjc.2012.07.020
 
22. A.A.Kutsanian, N.V.Popova, M.A.Komisarenko et al., Ukr. Biofarmatsevtychnyi Zh., 2, 76 (2020).
https://doi.org/10.24959/ubphj.20.265
 
23. N.Borodina, A.Raal, V.Kovalyov et al., The Open Agricult. J., 14, 136 (2020).
https://doi.org/10.2174/1874331502014010136
 
24. O.Y.Mikhedkina, O.S.Pelypets, I.V.Peretiatko et al., Zh. Orhanichnoi ta Farmatsevtychnoi Khimii, 17, 66 (2019).
https://doi.org/10.24959/ophcj.19.972
 
25. E.V.Vashkevych, V.Y.Potkyn, N.H.Kozlov, E.D.Skakovskyi, Zh. Organ. Khimii, 39, 1657 (2003).
 
26. E.A.Akyshyna, D.V.Kazak, E.A.Dykusar et al., Zh. Organ. Khimii, 90, 1223 (2020).
https://doi.org/10.31857/S0044460X20080107
 
27. E.A.Dikusar, V.Y.Potkin, N.H.Kozlov, Zameshchennye Benzaldehidy Vanylynovoho Riada v Orhanycheskom Synteze: Poluchenye, Prymenenye, Byolohycheskaia Aktyvnost, Saarbrucken, LAP LAMBERT Academic Publishing (2012) [in Russian].
 
28. L.M.N.Saleem, Organ. Magn. Resonance, 19, 176 (1982).
https://doi.org/10.1002/mrc.1270190403
 
29. J.Dabrowski, L.Kozerski, Organ. Magn. Resonance, 4, 137 (1972).
https://doi.org/10.1002/mrc.1270040116
 

Current number: