Funct. Mater. 2021; 28 (3): 605-611.

doi:https://doi.org/10.15407/fm28.03.605

Electrochemical biosensor based on reduced graphene oxide and CMC/silica sol-gel hybrid membranes for the detection of VB6

Meng Cui1, Likun Long1, Yanhui Wu1, Di Gao2, Yandong Wang1

1Research Center of Material Science and Engineering, Jilin Institute of Chemical Technology, 132013 Jilin, China
2Jilin Thermal Power Plant, National Energy Group, 132013 Jilin, China

Abstract: 

A novel platform based on graphene oxide (GO) and hybrid membranes of silica and carboxymethyl cellulose (CMC) (short for GO-SiO2-CMC) was constructed for the fabrication of an electrochemical sensor. The morphology of the composite was tested with SEM. Electrochemical methods including electrochemical impedance spectroscopy and cyclic voltammetry were used to study the composite with an Electrochemical Workstation. The results show that the modified electrode has increased sensitivity, for example, to oxidation of Vitamin B6 (VB6), high detection sensitivity (31.5 μAmM-1cm-2), low limit of detection (10-7 M), small Ret value (252 Ω) and good stability. This may be due to high conductivity and large surface-to-volume ratio of GO, which can facilitate the direct transfer of electrons between the electrode surface and VB6. The results obtained allow us to propose a simple, sensitive and flexible method for the quantitative determination of vitamin B6 using electrochemical technology.

Keywords: 
electrochemical biosensor, graphene oxide, CMC/silica sol-gel hybrid membranes.
References: 
1. F.G.Torres, O.P.Troncoso, L.Rodriguez et al., Sust. Mater. Tech., 29,(2021).
https://doi.org/10.1016/j.susmat.2021.e00310
 
2. G.Yildiz, M.Bolton-Warberg, F.Awaja, Acta Biomaterialia, 9, (2021). DOI:10.1016/ j.actbio.2021.06.047
 
3. V.S.Raghavan, B.O'Driscoll, J.M.Bloor et al., Food Chem., 355, 129547 (2021).
https://doi.org/10.1016/j.foodchem.2021.129547
 
4. I.A.Mattioli, A.Hassan, N.M.Sanches et al., Biosens. Bioelectron., 175, 112851 (2021).
https://doi.org/10.1016/j.bios.2020.112851
 
5. M.Azizi-Lalabadi, S.MahdiJafari, Adv. Colloid Interf. Sci, 292, 102416 (2021).
https://doi.org/10.1016/j.cis.2021.102416
 
6. X.D.Xia, J.Li, J.J.Zhang et al., Int. J. Eng. Sci., 158, 103411 (2021).
https://doi.org/10.1016/j.ijengsci.2020.103411
 
7. H.N.Mao, X.G.Wang, New Carbon Mater., 35, 336 (2020).
https://doi.org/10.1016/S1872-5805(20)60493-0
 
8. A.Khakzad, A.Ebrahimian Pirbazari, F.E.K.Saraei et al., Physica B: Cond. Mater, 603, 412736 (2021).
https://doi.org/10.1016/j.physb.2020.412736
 
9. H.WooKim, Y.J.Kwon, A.Mirzaei et al,, Sens. Actuat. B: Chem., 249, 590 (2017).
https://doi.org/10.1016/j.snb.2017.03.149
 
10. A.M.Sadoun, I.M.R.Najjar, A.Wagih, Ceramics Intern., 47, 10855 (2021).
https://doi.org/10.1016/j.ceramint.2020.12.203
 
11. K.Alamelu, B.M.Jaffar Ali. P, Solar Energy, 211, 1194 (2020).
https://doi.org/10.1016/j.solener.2020.10.058
 
12. D.F.Baez, T.P.Brito, L.C.Espinoza et al., Microchem. J., 167, 106303 (2021).
https://doi.org/10.1016/j.microc.2021.106303
 
13. J.Sengupta, C.M.Hussain, Carbon Trends, 2, 100011 (2021).
https://doi.org/10.1016/j.cartre.2020.100011
 
14. T.T.Calam, Microchem. J., 169, 106557 (2021).
https://doi.org/10.1016/j.microc.2021.106557
 
15. J.Chen, B.Q.Li, Y.Q.Cui et al., J. Food Compos. Anal., 41, 122 (2015).
https://doi.org/10.1016/j.jfca.2015.02.003
 
16. L.Xie, J.J.Huang, Q.Han et al., J. Chromatography A, 1589, 30 (2018).
https://doi.org/10.1016/j.chroma.2018.12.062
 
17. J.Gonzalez-Rodriguez, J.M.Sevilla, T.Pineda et al., J. Electroanal. Chem,, 877, 114525 (2020).
https://doi.org/10.1016/j.jelechem.2020.114525
 
18 C.Y.Wang, J.Tian, T.Y,You, Chinese J. Appl. Chem., 28, 590 (2011).
 
19. R.C.Barthus, L.H.Mazo, R.J.Poppi, J. Pharm. Biomed. Anal., 38, 94 (2005).
https://doi.org/10.1016/j.jpba.2004.12.017
 
20. Y.X.Sun, G.Z.Zhou, L.L.Liu, J. Hunan Liberal Arts College (natural science edition), 22, 20 (2010).
 
21. W.Xiang, J.Y.Li, S.Y.Ma, J. Anal. Sci., 23, 437 (2007).
https://doi.org/10.2116/analsci.23.713
 
22. M.Cui, F.J.Wang, Z.Q.Shao et al., Cellulose, 18, 1265 (2011).
https://doi.org/10.1007/s10570-011-9570-7
 
23. K.R.Parmar, D.T.K.Dora, K.K.Pant, J. Hazardous Mater., 375, 206 (2019).
https://doi.org/10.1016/j.jhazmat.2019.04.017
 
24. C.Chen, L.Wang, Y.Tan et al., Biosens. Bioelectr., 26, 2311 (2011).
https://doi.org/10.1016/j.bios.2010.09.058
 
25. X.Liu, L.L.Xie, H.L.Li, J. Electroanal. Chem., 682, 158 (2012).
https://doi.org/10.1016/j.jelechem.2012.07.031

Current number: