Funct. Mater. 2021; 28 (3): 605-611.
Electrochemical biosensor based on reduced graphene oxide and CMC/silica sol-gel hybrid membranes for the detection of VB6
1Research Center of Material Science and Engineering, Jilin Institute of Chemical Technology, 132013 Jilin, China
2Jilin Thermal Power Plant, National Energy Group, 132013 Jilin, China
A novel platform based on graphene oxide (GO) and hybrid membranes of silica and carboxymethyl cellulose (CMC) (short for GO-SiO2-CMC) was constructed for the fabrication of an electrochemical sensor. The morphology of the composite was tested with SEM. Electrochemical methods including electrochemical impedance spectroscopy and cyclic voltammetry were used to study the composite with an Electrochemical Workstation. The results show that the modified electrode has increased sensitivity, for example, to oxidation of Vitamin B6 (VB6), high detection sensitivity (31.5 μAmM-1cm-2), low limit of detection (10-7 M), small Ret value (252 Ω) and good stability. This may be due to high conductivity and large surface-to-volume ratio of GO, which can facilitate the direct transfer of electrons between the electrode surface and VB6. The results obtained allow us to propose a simple, sensitive and flexible method for the quantitative determination of vitamin B6 using electrochemical technology.
1. F.G.Torres, O.P.Troncoso, L.Rodriguez et al., Sust. Mater. Tech., 29,(2021). https://doi.org/10.1016/j.susmat.2021.e00310 |
||||
2. G.Yildiz, M.Bolton-Warberg, F.Awaja, Acta Biomaterialia, 9, (2021). DOI:10.1016/ j.actbio.2021.06.047 | ||||
3. V.S.Raghavan, B.O'Driscoll, J.M.Bloor et al., Food Chem., 355, 129547 (2021). https://doi.org/10.1016/j.foodchem.2021.129547 |
||||
4. I.A.Mattioli, A.Hassan, N.M.Sanches et al., Biosens. Bioelectron., 175, 112851 (2021). https://doi.org/10.1016/j.bios.2020.112851 |
||||
5. M.Azizi-Lalabadi, S.MahdiJafari, Adv. Colloid Interf. Sci, 292, 102416 (2021). https://doi.org/10.1016/j.cis.2021.102416 |
||||
6. X.D.Xia, J.Li, J.J.Zhang et al., Int. J. Eng. Sci., 158, 103411 (2021). https://doi.org/10.1016/j.ijengsci.2020.103411 |
||||
7. H.N.Mao, X.G.Wang, New Carbon Mater., 35, 336 (2020). https://doi.org/10.1016/S1872-5805(20)60493-0 |
||||
8. A.Khakzad, A.Ebrahimian Pirbazari, F.E.K.Saraei et al., Physica B: Cond. Mater, 603, 412736 (2021). https://doi.org/10.1016/j.physb.2020.412736 |
||||
9. H.WooKim, Y.J.Kwon, A.Mirzaei et al,, Sens. Actuat. B: Chem., 249, 590 (2017). https://doi.org/10.1016/j.snb.2017.03.149 |
||||
10. A.M.Sadoun, I.M.R.Najjar, A.Wagih, Ceramics Intern., 47, 10855 (2021). https://doi.org/10.1016/j.ceramint.2020.12.203 |
||||
11. K.Alamelu, B.M.Jaffar Ali. P, Solar Energy, 211, 1194 (2020). https://doi.org/10.1016/j.solener.2020.10.058 |
||||
12. D.F.Baez, T.P.Brito, L.C.Espinoza et al., Microchem. J., 167, 106303 (2021). https://doi.org/10.1016/j.microc.2021.106303 |
||||
13. J.Sengupta, C.M.Hussain, Carbon Trends, 2, 100011 (2021). https://doi.org/10.1016/j.cartre.2020.100011 |
||||
14. T.T.Calam, Microchem. J., 169, 106557 (2021). https://doi.org/10.1016/j.microc.2021.106557 |
||||
15. J.Chen, B.Q.Li, Y.Q.Cui et al., J. Food Compos. Anal., 41, 122 (2015). https://doi.org/10.1016/j.jfca.2015.02.003 |
||||
16. L.Xie, J.J.Huang, Q.Han et al., J. Chromatography A, 1589, 30 (2018). https://doi.org/10.1016/j.chroma.2018.12.062 |
||||
17. J.Gonzalez-Rodriguez, J.M.Sevilla, T.Pineda et al., J. Electroanal. Chem,, 877, 114525 (2020). https://doi.org/10.1016/j.jelechem.2020.114525 |
||||
18 C.Y.Wang, J.Tian, T.Y,You, Chinese J. Appl. Chem., 28, 590 (2011). | ||||
19. R.C.Barthus, L.H.Mazo, R.J.Poppi, J. Pharm. Biomed. Anal., 38, 94 (2005). https://doi.org/10.1016/j.jpba.2004.12.017 |
||||
20. Y.X.Sun, G.Z.Zhou, L.L.Liu, J. Hunan Liberal Arts College (natural science edition), 22, 20 (2010). | ||||
21. W.Xiang, J.Y.Li, S.Y.Ma, J. Anal. Sci., 23, 437 (2007). https://doi.org/10.2116/analsci.23.713 |
||||
22. M.Cui, F.J.Wang, Z.Q.Shao et al., Cellulose, 18, 1265 (2011). https://doi.org/10.1007/s10570-011-9570-7 |
||||
23. K.R.Parmar, D.T.K.Dora, K.K.Pant, J. Hazardous Mater., 375, 206 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.017 |
||||
24. C.Chen, L.Wang, Y.Tan et al., Biosens. Bioelectr., 26, 2311 (2011). https://doi.org/10.1016/j.bios.2010.09.058 |
||||
25. X.Liu, L.L.Xie, H.L.Li, J. Electroanal. Chem., 682, 158 (2012). https://doi.org/10.1016/j.jelechem.2012.07.031 |