Funct. Mater. 2021; 28 (4): 628-632

doi:https://doi.org/10.15407/fm28.04.628

Functional nanoparticles for biomedical applications: a dsc study of membranotropic behavior

A.N.Samoilov1, L.N.Lisetski1, N.A.Kasian1, M.Yu.Losytskyy2, A.A.Golub3, V.M.Yashchuk2

1Institute for Scintillation Materials, STC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Taras Shevchenko Kyiv National University, Kyiv, Ukraine
3National University of Kyiv-Mohyla Academy, Kyiv, Ukraine

Abstract: 

Interaction of fullerene-containing silica nanoparticles (SiO2-C60, SiO2-C60-Pd) and DNA of natural origin (DNA and low molecular weight DNA - LmwDNA) with phospholipid model membranes was studied using differential scanning calorimetry (DSC). SiO2-C60, SiO2-C60-Pd and DNA had only minor effects on L-α-dipalmitoyl phosphatidyl choline (DPPC) membrane phase transitions, remaining essentially inert. LmwDNA induced noticeable changes in the DSC profiles, with the effects (increasing of the main phase transition temperature, significant peak broadening and splitting, vanishing of the pre-transition peak) increasing with concentration. No noticeable deviations from additivity could be noted under joint introduction of the nanosystems into DPPC membranes.

Keywords: 
nanoparticles, phospholipid membranes, differential scanning calorimetry, low molecular weight DNA, phase transition.
References: 
1. W.Chen, J.Zhang, J. Nanosci. Nanotech., 6, 1159 (2006).
https://doi.org/10.1166/jnn.2006.327
 
2. W.Sun, Z.Zhou, G.Pratx et al., Theranostics, 10, 1296 (2020).
https://doi.org/10.7150/thno.41578
 
3. A.-L.Bulin, C.Truillet, R.Chouikrat et al., J. Phys. Chem. C. 117, 21583 (2013).
https://doi.org/10.1021/jp4077189
 
4. X.Zou, M.Yao, L.Ma et al., Nanomedicine. 9, 2339 (2014).
https://doi.org/10.2217/nnm.13.198
 
5. S.Kascakova, A.Giuliani, S.Lacerda et al., Nano Research., 8, 2373 (2015).
https://doi.org/10.1007/s12274-015-0747-5
 
6. H.Chen, G.D.Wang, Y.J.Chuang et al., NanoLett., 15, 2249 (2015).
https://doi.org/10.1021/nl504044p
 
7. D.R.Cooper, K.Kudinov, P.Tyagi et al., Phys. Chem. Chem. Phys., 16, 12441 (2014).
https://doi.org/10.1039/C4CP01044B
 
8. Clement, W.Deng, E.Camilleri et al., Scie. Reports, 6, 19954 (2016).
https://doi.org/10.1038/srep19954
 
9. S.L.Yefimova, T.N.Tkacheva, P.O.Maksimchuk et al., J.Luminescence, 192, 975 (2017).
https://doi.org/10.1016/j.jlumin.2017.08.044
 
10. J.Xu, J.Gao, Q.Wei, J.Nanomater., 2016, 8507924 (2016).
 
11. M.O.Davydenko, E.O.Radchenko, V.M.Yashchuk et al., J.Molec. Liq., 127, 145 (2006).
https://doi.org/10.1016/j.molliq.2006.03.046
 
12. O.Vashchenko, V.Pashynska, M.Kosevich et al., Mol. Cryst. Liq. Cryst., 547, 155 (2011).
https://doi.org/10.1080/15421406.2011.572038
 
13. N.A.Kasian, V.A.Pashynska, O.V.Vashchenko et al., Mol. BioSyst., 10, 3155 (2014).
https://doi.org/10.1039/C4MB00420E
 
14. R.Koynova, M.Caffrey, Biochim. Biophys. Acta, 1376, 91 (1996).
https://doi.org/10.1016/S0304-4157(98)00006-9
 
15. L.N.Lisetski, O.V.Vashchenko. N.A.Kasian, L.V.Sviechnikova, Springer Proc. Phys, 266, 85 (2021).
https://doi.org/10.1007/978-3-030-80924-9_4

Current number: