Funct. Mater. 2021; 28 (4): 633-636

doi:https://doi.org/10.15407/fm28.04.633

Scintillation properties of single crystals of K(Sr1-xEux)2Cl5 solid solutions

A.L.Rebrov1, Ya.A.Boyarintseva1, V.L.Cherginets1, T.E.Gorbacheva1, A.Yu.Grippa1, T.P.Rebrova1, T.V.Ponomarenko1, O.I.Yurchenko2, N.V.Rebrova1, V.A.Tarasov1, P.N.Zhmurin1

1Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

The influence of Eu content on scintillation properties of single crystals of K(Sr1-xEux)2Cl5 composition has been studied. The single crystals were grown using the directional crystallization (Bridgman method). The dependence of the scintillation parameters (light yield, energy resolution) of K(Sr1-xEux)2Cl5 single crystals on the Eu content reaches the optimum at x = 0.01. The absolute light yield of the K(Sr0.99Eu0.01)2Cl5 single crystal was estimated as 38000 photons per MeV.

Keywords: 
scintillator, chlorides, solid solutions, single crystals, absolute light yield, energy resolution.
References: 
1. E.D.Bourret-Courchesne, G.Bizarri, S.M.Hanrahan et al., Nucl. Instrum. Meth. Phys. Res., Sect.A, 613, 95 (2010).
https://doi.org/10.1016/j.nima.2009.11.036
 
2. E.V.D. van Loef, P.Dorenbos, C.W.E.van Eijk et al., Nucl. Instrum. Meth. Phys. Res., Sect.A, 486, 254 (2002).
https://doi.org/10.1016/S0168-9002(02)00712-X
 
3. N.J.Cherepy, G.Hull, A.D.Drobshoff et al., Appl. Phys. Lett., 92, 083508 (2008).
https://doi.org/10.1063/1.2885728
 
4. N.J.Cherepy, S.A.Payne, S.J.Asztalos et al., IEEE Trans. Nucl. Sci., 56, 873 (2009).
https://doi.org/10.1109/TNS.2009.2020165
 
5. M.D.Birowosuto, P.Dorenbos, C.W.E.van Eijk et al., IEEE Trans. Nucl. Sci., 52, 1114 (2005).
https://doi.org/10.1109/TNS.2005.852630
 
6. W.Moses, in: Abstr. 7th Int. Conf. on Inorganic Scintillators and Industrial Applications, Valencia, Spain (2003), p.48.
 
7. L.Stand, M.Zhuravleva, G.Gamarda et al., J. Cryst. Growth, 439, 93 (2016).
https://doi.org/10.1016/j.jcrysgro.2015.12.048
 
8. A.L.Rebrov, V.L.Cherginets, T.V.Ponomarenko et al., J. Cryst.Growth, 543, 125706 (2021).
https://doi.org/10.1016/j.jcrysgro.2020.125706
 
9. V.L.Cherginets, T.P.Rebrova, T.V.Ponomarenko et al., Thermochim. Acta, 680, 178355 (2019).
https://doi.org/10.1016/j.tca.2019.178355
 
10. E.Sysoeva, V.Tarasov, O.Zelenskaya, Nucl. Instrum. Meth. Phys. Res., Sect.A, 486, 67 (2002).
https://doi.org/10.1016/S0168-9002(02)00676-9
 
11. https://www.crct.polymtl.ca/fact/phase_diagram.php?file= KCl-SrCl2.jpg&dir= FTsalt (Last visited June 14 2021).
 
12. http://abulafia.mt.ic.ac.uk/shannon/radius.php (Last visited June 14 2021).
 
13. https://www.angelo.edu/faculty/kboudrea/periodic/ trends_electronegativity.htm (Last visited June 14 2021)
 
14. N.V.Rebrova, A.Yu.Grippa, A.S.Pushak et al., J. Cryst. Growth, 466, 39 (2017).
https://doi.org/10.1016/j.jcrysgro.2017.03.016
 
15. V.L.Cherginets, A.Yu.Grippa, T.P.Rebrova et al., Functional Materials, 19, 187 (2012).
 
16. M.Moszynsky, M.Kapusta, M.Mayhugh et al., IEEE Trans. Nucl. Sci., 44, 1052 (1997).
https://doi.org/10.1109/23.603803

Current number: