Funct. Mater. 2021; 28 (4): 637-640

doi:https://doi.org/10.15407/fm28.04.637

Photoacoustic effect and superconductivity of metals

Yu.I.Boyko1, V.V.Bogdanov1, R.V.Vovk1, B.V.Grinev2

1V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2Institute of Scintillation Materials STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

The possibility of using the photoacoustic effect to transform metals into a superconducting state at room temperature is discussed. Laser radiation with a wavelength ~5·10-6 m and pulse duration ~10-8 s when the laser power density is reached ~1012 W/m2+ can cause in the volume of metal a shock wave up to ~10 GPa. The shock wave is accompanied by the generation of phonons characterized by a frequency that is an order of magnitude higher than the analogous parameter in metals, which increases the Debye temperature to a value ~103+ K, and, accordingly, increases the value of the electron pairing constant λ >> 1. In accordance with the microscopic theory of superconductivity in metals (BKS theory), an increase in these parameters should lead to an increase in the critical temperature of the metal transition to the superconducting state. According to estimates, the transition temperature can reach a value close to room temperature.

Keywords: 
high-temperature superconductivity, photoacoustic effect, electron-phonon interaction.
References: 
1. V.Bukkel, Superconductivity. Fundamentals and Applications , Translated from German by Yu.A. Bashkirov, Mir, M., 1975, 370 p. [in Russian]
 
2. D.Fishlock, A Guide to Superconductivity, McDonald, London (1969).
 
3. J.F.C.Williams, Superconductivity and its Applications, Piton Limited, Brond. Park, London (1970).
 
4. J.G.Bednorz, K.A.Muller, Z. Phys., B-64, 169 (1986).
https://doi.org/10.1007/BF01303701
 
5. M.K.Wu, J.R.Asburn, C.J.Torng et al., Phys. Rev. Lett., 58, 908 (1987).
https://doi.org/10.1103/PhysRevLett.58.908
 
6. A.Schiling, M.Cantoni, J.D.Guo, H.R.Ott, Nature, 363, 56 (1993).
https://doi.org/10.1038/363056a0
 
7. A.P.Drozdov, M.I.Eremets, I.A.Troyan et al., Nature, 525, 73 (2015).
https://doi.org/10.1038/nature14964
 
8. M.Somayazulu, M.Ahart, A.K.Mishra et al., Phys. Rev. Lett., 122, 027001 (2019).
https://doi.org/10.1103/PhysRevLett.122.027001
 
9. J.Bardeen, L.N.Cooper, J.R.Schrieffer, Phys. Rev., 108, 1175 (19578).
https://doi.org/10.1103/PhysRev.108.1175
 
10. B.P.Feirand, A.H.Clauer, J. Appl. Phys., 50, 1497 (1979).
https://doi.org/10.1063/1.326137
 
11. V.D.Sadovsky, V.M.Schastlivtsev, T.I.Tabachnikova, I.L.Yakovleva, Laser Heating and the Structure of Steel, Academy of Sciences of the USSR, Sverdlovsk (1989) [in Russian].
 
12. V.Kresin, H.Gutfreund, W.Little, Solid State Commun., 51, 339 (1984).
https://doi.org/10.1016/0038-1098(84)90701-4
 

Current number: