Funct. Mater. 2021; 28 (4): 652-661

doi:https://doi.org/10.15407/fm28.04.652

Effects of grain-size and specimen thickness on dislocation kinetics in uniaxially strained thin Al sheets with one grain in thickness

Ye.V.Ftomov, O.V.Shekhovtsov, E.E.Badiyan, A.G.Tonkopryad

V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

This study expands the well-known Kocks-Mecking strain hardening model by describing the effects of grain size and sample thickness, as well as the kinetics of dislocations during uniaxial deformation of thin aluminum sheets with one grain in thickness. In the kinetic equation for the dislocation density, the coefficients are determined for the case of flat samples with a "pancake" grain structure. The kinetic equation was transformed using Taylor's law of strain hardening in a standard way; and the solution to this equation was obtained to calculate the stress - strain curve of Al specimens with average grain sizes and thicknesses in the range of 0.2 <ds <20 mm and 0.05 <t <1 mm, respectively. An approximate Hall-Petch type relation is obtained. Based on the kinetic consideration of the processes of storage and recovery of dislocations, the effect of the grain size and specimen thickness on the flow stress and the strain-hardening rate is studied. The calculation results are in good agreement with obtained experimental data.

Keywords: 
uniaxial straining, dislocation kinetics, thin Al sheets, &quot;pancake&quot; grain structure.
References: 
1. H.-J.Leea, P.Zhang, J.C.Bravman, J. Appl. Phys., 93, 1443 (2003).
https://doi.org/10.1063/1.1532933
 
2. P.J.Janssen, T.H.de Keijser, M.G.Geers, Mater. Sci. Eng., A 419, 238 (2006).
https://doi.org/10.1016/j.msea.2005.12.029
 
3. C.Keller, E.Hug, R.Retoux, X.Feaugas, Mechan. Mater., 42, 44 (2010).
https://doi.org/10.1016/j.mechmat.2009.09.002
 
4. G.A.Malygin, Phys. Solid State, 54, 559 (2012).
https://doi.org/10.1134/S1063783412030171
 
5. K.M.Davoudi, J.J.Vlassak, J. Appl. Phys., 123, 085302 (2018).
https://doi.org/10.1063/1.5013213
 
6. T.R.Bielera, R.Alizadeh, M.Pena-Ortega, J.Llorca, Intern. J. Plasticity, 118, 269 (2019).
https://doi.org/10.1016/j.ijplas.2019.02.014
 
7. E.O.Hall, Proc. Phys. Soc. B., 64, 747 (1951).
https://doi.org/10.1088/0370-1301/64/9/303
 
8. N.J.Petch, J. Iron Steel Inst., 174, 25 (1953).
 
9. S.Miyazaki, K.Shibata, H.Fujita, Acta Metall., 27, 855 (1978).
https://doi.org/10.1016/0001-6160(79)90120-2
 
10. U.F.Kocks, H.Mecking, Acta Metall., 29, 1865 (1981).
https://doi.org/10.1016/0001-6160(81)90112-7
 
11. Y.Estrin, H.Mecking, Acta Metall., 32, 57 (1984).
https://doi.org/10.1016/0001-6160(84)90202-5
 
12. U.F.Kocks, H.Mecking, Progr. Mater. Sci., 48, 171 (2003).
https://doi.org/10.1016/S0079-6425(02)00003-8
 
13. E.E.Badiyan, A.G.Tonkopryad, Ye.V.Ftomov, O.V.Shekhovtsov, Functional Materials, 26, 484 (2019).
https://doi.org/10.15407/fm26.01.88
 
14. N.Hansen, X.Huang, Acta Mater., 46, 1827 (1998).
https://doi.org/10.1016/S1359-6454(97)00365-0
 
15. E.E.Badiyan, A.G.Tonkopryad, O.V.Shekhovtsov et al., Functional Materials, 22, 396 (2015).
https://doi.org/10.15407/fm22.03.396
 
16. Ye.V.Ftomov, J. V.Karazin Kharkiv National University, Ser. "Physics", 34, 25 (2021).
 
17. G.I.Taylor, Proc. Roy. Soc. A., 145, 362 (1934).
https://doi.org/10.1098/rspa.1934.0106
 
18. G.A.Malygin, Phys. Solid State, 52, 49 (2010).
https://doi.org/10.1134/S1063783410010099
 
19. G.I.Taylor, J. Inst. Metals, 62, 307 (1938).
 
20. X.Huang, A.Borrego, W.Pantleon, Mater. Sci. Engin. A, 319-321, 237 (2001).
https://doi.org/10.1016/S0921-5093(01)01019-X
 
21. G.A.Malygin, Phys. Solid State, 49, 1013 (2007).
https://doi.org/10.1134/S1063783407060017
 
22. J.C.M.Li, T.Chou, Metal. Trans., 1, 1145 (1970).
https://doi.org/10.1007/BF02900225
 
23. E.S.Venkatesh, L.E.Murr, Mater. Sci. Eng., 33, 69 (1978).
https://doi.org/10.1016/0025-5416(78)90155-6
 
24. E.V.Esquivel, L.E.Murr, Mater. Sci. Eng. A, 409, 13 (2005).
https://doi.org/10.1016/j.msea.2005.04.063
 
25. Z.C.Cordero, B.E.Knight, C.A.Schuh, Intern. Mater. Rev., 61, 495 (2016).
https://doi.org/10.1080/09506608.2016.1191808

Current number: