Funct. Mater. 2021; 28 (4): 662-668

doi:https://doi.org/10.15407/fm28.04.662

Specific heat of Bi2(Te1-xSex)3 solid solutions

K.V.Martynova, E.I.Rogacheva, G.V.Lisachuk

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The temperature dependences of the specific heat Cp in the temperature range T = 175-500 K were obtained for Bi2(Te1-xSex)3 solid solutions (е = 0-0.06). The peaks of specific heat are revealed on the isotherms of Cp, the presence of which is attributed to the realization of the percolation-type phase transition from dilute solid solutions to concentrated ones. The obtained value of the critical index for the composition dependences Cp(е) (α = 0.105) corresponds to the values of α for specific heat in case of the second-order phase transitions. The results of this work confirm the previously suggested assumption that the concentration anomalies of electrophysical properties observed in the study of Bi2(Te1-xSex)3 solid solutions can be interpreted as the manifestation of the critical phenomena accompanying the percolation-type phase transition from dilute to concentrated solid solutions.

Keywords: 
solid solution, specific heat, composition, temperature, percolation, critical phenomena, critical index.
References: 

 

1. C.Uher (ed.), Materials Aspect of Thermoelectricity, CRC Press, Boca Raton, Taylor & Francis Group (2016).
https://doi.org/10.1201/9781315197029
 
2. D.M.Rowe (ed.), Materials, Preparation, and Characterization in Thermoelectrics. CRC Press, Boca Raton, Taylor & Francis Group (2012).
 
3. E.I.Rogacheva, T.N.Shelest, E.V.Martynova et al., Functional Materials, 26, 254 (2019).
 
4. E.I.Rogacheva, E.V.Martynova, T.N.Shelest et al., Materials Today: Proceedings, 44, 3506 (2021).
https://doi.org/10.1016/j.matpr.2020.09.159
 
5. E.I.Rogacheva, J. Thermoelectricity, 2, 61 (2007).
 
6. E.I.Rogacheva, O.N.Nashchekina, Percolation Effects in Semiconductor IV-VI Based Solid Solutions and Thermoelectric Materials Science, in: Advanced Thermoelectric Materials, ed. by Chong Rae Park, John Wiley & Sons Inc, New York (2019).
https://doi.org/10.1002/9781119407348.ch9
 
7. N.P.Gorbachuk, V.V.Zakharov, V.R.Sidorko, L.V.Goncharuk, Powder Metall. Metal Ceram., 44, 372 (2005).
https://doi.org/10.1007/s11106-005-0105-3
 
8. G.E.Shoemake, J.A.Rayne, Phys. lett., 27A, 45 (1968).
https://doi.org/10.1016/0375-9601(68)91328-5
 
9. W.Liu, K.C.Lukas, K.McEnaney et al., Energy Environm Sci, 6, 552 (2013).
https://doi.org/10.1039/C2EE23549H
 
10. S.Li, C.Persson, J. Appli. Mathem. Phys., 3, 1563 (2015).
https://doi.org/10.4236/jamp.2015.312180
 
11. X.-D. Liu, Y.-H.Park, Mater. Transact., 43, 681 (2002).
https://doi.org/10.2320/matertrans.43.681
 
12. B.M.Goltzman, V.A.Kudinov, I.A.Smirnov, Semiconductor Bi2Te3-based Thermoelectric Materials, Nauka, Moscow (1972) [in Russian].
 
13. E.V.Safonova, R.A.Konchakov, Ju.P.Mitrofanov et al., JETP Letters, 103, 81 (2016).
https://doi.org/10.1134/S0021364016120134
 
14. A.A.Maradudin, P.A.Flinn, Annal. Phys., 16, 360 (1961).
https://doi.org/10.1016/0003-4916(61)90189-0
 
15. I.K.Kamilov, A.K.Murtazaev, H.K.Aliev, Adv. Phys. Scie., 169, 773 (1999).
https://doi.org/10.3367/UFNr.0169.199907d.0773
 
16. H.E.Stanley, Rev. Mod. Phys., 71, S358 (1999).
https://doi.org/10.1103/RevModPhys.71.S358
 
17. E.I.Rogacheva, A.N.Doroshenko, O.N.Nashchekina, M.S.Dresselhaus, Appl. Phys. Lett., 109, 131906 (2016).
https://doi.org/10.1063/1.4963880
 
18. E.I.Rogacheva, A.N.Doroshenko, O.N.Nashchekina, Functional Materials, 25, 720 (2018).
https://doi.org/10.15407/fm25.04.720
 
19. R.H.Bruce, Phys. Rev. B, 15, 4451 (1977).
https://doi.org/10.1103/PhysRevB.15.4451

 

Current number: