Funct. Mater. 2021; 28 (4): 669-675
Effect of Zn doping on the structural and optical properties of NiO thin films deposited by spray pyrolysis technique
1+Department of Material Sciences, Faculty of SESNV, LarbiTebessi University-Tebessa, Algeria
2+Laboratory of Study and Research of Condensed States, Badji Mokhtar-Annaba University, 23000 Annaba, Algeria
3+Laboratory of Applied and Theoretical Physics(LPAT), Larbi Tebessi University-Tebessa, 12002 Tebessa, Algeria
4+Laboratory of Bioactive Molecules and Applications, Larbi Tebessi University-Tebessa 12000, Algeria
5+LMSSEF, Larbi ben M'Hidi University, 04000-Oum El Bouaghi, Algeria
We have prepared undoped and Zn-doped NiO thin films (2 wt. %, 4 wt. % and 6 wt. %) by spray pyrolysis technique, deposited on heated glass substrates (450°C). Nickel chloride hexahydrate and zinc acetate dihydrate have been used as starting precursors. The effect of zinc doping on the structural and optical properties of NiO thin films has been determined using X-ray diffraction and UV-visible spectroscopy, respectively. Structural analysis by X-ray diffraction confirmed that our samples are polycrystalline with cubic structure (FCC). The variations of the microstructural parameters such as the crystallite size, lattice constant and dislocation density in the films as a function of Zn doping concentration were investigated. The crystallite size increases gradually with an increase in the Zn doping degree. The values of the optical transmission and the optical band gap of the films decrease with an increase in the doping degree. The values of optical transmission of the films can reach from 45 % to 65 % in the visible range. The values of optical gap are varied between 3.62 eV and 3.69 eV.
1. Y.Li, R.Yao, H.Wang et al., ACS Appl. Mater. Inter., 9, 11711 (2017). https://doi.org/10.1021/acsami.7b02609 |
||||
2. H.Kawazoe, M.Yasukawa, H.Hyodo et al., Nature, 389, 939 (1997). https://doi.org/10.1038/40087 |
||||
3. G.Thomas, Nature, 389, 907 (1997). https://doi.org/10.1038/39999 |
||||
4. M.M.Gomaa, G.R.Yazdi, S.Schmidt et al., Mater. Sci. Semicon. Proc., 64, 32 (2017). https://doi.org/10.1016/j.mssp.2017.03.009 |
||||
5. Z.T.Khodair, B.A.Ibrahim, M.K.Hassan, Mater. Today, 20, 560 (2020). https://doi.org/10.1016/j.matpr.2019.09.189 |
||||
6. T.Chtouki, L.Soumahoro, B.Kulyk et al., Optik, 128, 8 (2017). https://doi.org/10.1016/j.ijleo.2016.10.007 |
||||
7. R.Sharma, A.D.Acharya, S.B.Shrivastava et al., Optik, 125, 6751 (2014). https://doi.org/10.1016/j.ijleo.2014.07.104 |
||||
8. B.Subramanian, M.M.Ibrahim, V.Senthilkumar et al., Physica B, 403, 4104 (2008). https://doi.org/10.1016/j.physb.2008.08.014 |
||||
9. C.C.Wu, C.F.Yang, Nanoscale. Res. Lett., 8, 33 (2013). https://doi.org/10.1186/1556-276X-8-33 |
||||
10. A.Dihaa, S.Benramache, B.Benhaoua, Optik-Int. J. Light Elect. Optics, 172, 832 (2018). https://doi.org/10.1016/j.ijleo.2018.07.062 |
||||
11. R.Sharma, A.D.Acharya, S.B.Shrivastava et al., Optik - Int. J. Light Elect. Optics, 127, 4661 (2016). https://doi.org/10.1016/j.ijleo.2016.01.050 |
||||
12. J.H.Lee, Y.W.Noh, I.S.Jin, J.W.Jung, Electrochim. Acta, 284, 253 (2018). https://doi.org/10.1016/j.electacta.2018.07.178 |
||||
13. S.C.Chen,T.Y.Kuo, H.C.Lin et al., Appl. Surf. Sci, 508, 145106 (2020). https://doi.org/10.1016/j.apsusc.2019.145106 |
||||
14. D.Singh, A.Das, R.S.Ajimsha et al., Mater. Sci. Semicon. Proc., 66, 186 (2017). https://doi.org/10.1016/j.mssp.2017.04.025 |
||||
15. W.Li, X.Zhang, X.Chen et al., Mater. Lett., 265, 127464 (2020). https://doi.org/10.1016/j.matlet.2020.127464 |
||||
16. M.R.Das, A.Mukherjee, P.Mitra, Physica E, 93, 243 (2017). https://doi.org/10.1016/j.physe.2017.06.018 |
||||
17. K.Sajilal, A.M.E.Raj, Mater. Lett., 164, 547 (2016). https://doi.org/10.1016/j.matlet.2015.11.065 |
||||
18. S.R.Ardekani, A.S.R.Aghdam, M.Nazari et al., J. Anal. Appl. Pyrol., 141, 104631 (2019). https://doi.org/10.1016/j.jaap.2019.104631 |
||||
19. L.Cattin, B.A.Reguig, A.Khelil et al., Appl. Surf. Sci., 254, 5814 (2008). https://doi.org/10.1016/j.apsusc.2008.03.071 |
||||
20. A.D.Acharya, S.Moghe, R.Panda et al., Thin Solid Films, 525, 55 (2012). https://doi.org/10.1016/j.tsf.2012.10.100 |
||||
21. R.Swanepoel, J. Phys. E: Sci. Instrum., 16, 1214 (1983) https://doi.org/10.1088/0022-3735/16/12/023 |
||||
22. E.R.Shaaban, I.S.Yahia, E.G.El-Metwally, Acta. Phys. Pol A., 121, 628 (2012). https://doi.org/10.12693/APhysPolA.121.628 |
||||
23. C.Thangamani, K.Pushpanathan, J. Chem. Pharm. Res., 8, 749 (2016). | ||||
24. Y.M.Lu, W.S.Hwang, J.S.Yang, H.C.Chuang, Thin Solid Films, 420-421, 54 (2002). https://doi.org/10.1016/S0040-6090(02)00654-5 |
||||
25. F.S.Hashim, N.A.Sami, Int. Lett. Chem. Phys. Astr., 53, 31 (2015). https://doi.org/10.18052/www.scipress.com/ILCPA.53.31 |
||||
26. S.Benramache, B.Benhaoua, Superlattice. Microst., 52, 807 (2012). https://doi.org/10.1016/j.spmi.2012.06.005 |
||||
27. H.Wanga, D.Mishra, P.Chen, J.Ting, J. Alloy. Compd., 584, 142 (2014). https://doi.org/10.1016/j.jallcom.2013.08.142 |
||||
28. T.Mahalingam, V.Dhanasekaran, R.Chandramohan, J.K.Rhee, J. Mater. Sci., 47, 1950 (2012). https://doi.org/10.1007/s10853-011-5989-3 |
||||
29. S.Prabahar, M.Dhanam, J. Cryst. Growth. 285 41 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.008 |
||||
30. I.Manouchehri, S.A.O.Alshiaa, D.Mehrparparvar et al., Optik, 127, 9400 (2016). https://doi.org/10.1016/j.ijleo.2016.06.092 |
||||
31. F.Ynineb, A.Hafdallah, M.S.Aida et al., Mater. Sci. Semicon. Proc., 16, 2021 (2013). https://doi.org/10.1016/j.mssp.2013.07.023 |
||||
32. S.Benhamida, B.Benhaoua, R.Barir et al., J. Nano-Elec. Phys., 9, 03004 (2017). https://doi.org/10.21272/jnep.9(3).03004 |
||||
33. H.Sato, T.Minami, S.Takata, T.Yamada, Thin Solid Films, 236, 27 (1993). https://doi.org/10.1016/0040-6090(93)90636-4 |
||||
34. Y.Igasaki, H.Saito, J. Appl. Phys., 69, 2190 (1991). https://doi.org/10.1063/1.348748 |
||||
35. W.S.Lau, S.J.Fonash, J. Electron.Mater., 16, 141 (1987). https://doi.org/10.1007/BF02655478 |
||||
36. J.D.Merchant, M.Cocivera, Chem. Mater., 7, 1742 (1995). https://doi.org/10.1021/cm00057a026 |
||||