Funct. Mater. 2021; 28 (4): 669-675

doi:https://doi.org/10.15407/fm28.04.669

Effect of Zn doping on the structural and optical properties of NiO thin films deposited by spray pyrolysis technique

A.Ferdi1,2, A.Hafdallah1,3, B.Harkati1,4, L.Herissi1,5

1+Department of Material Sciences, Faculty of SESNV, LarbiTebessi University-Tebessa, Algeria
2+Laboratory of Study and Research of Condensed States, Badji Mokhtar-Annaba University, 23000 Annaba, Algeria
3+Laboratory of Applied and Theoretical Physics(LPAT), Larbi Tebessi University-Tebessa, 12002 Tebessa, Algeria
4+Laboratory of Bioactive Molecules and Applications, Larbi Tebessi University-Tebessa 12000, Algeria
5+LMSSEF, Larbi ben M'Hidi University, 04000-Oum El Bouaghi, Algeria

Abstract: 

We have prepared undoped and Zn-doped NiO thin films (2 wt. %, 4 wt. % and 6 wt. %) by spray pyrolysis technique, deposited on heated glass substrates (450°C). Nickel chloride hexahydrate and zinc acetate dihydrate have been used as starting precursors. The effect of zinc doping on the structural and optical properties of NiO thin films has been determined using X-ray diffraction and UV-visible spectroscopy, respectively. Structural analysis by X-ray diffraction confirmed that our samples are polycrystalline with cubic structure (FCC). The variations of the microstructural parameters such as the crystallite size, lattice constant and dislocation density in the films as a function of Zn doping concentration were investigated. The crystallite size increases gradually with an increase in the Zn doping degree. The values of the optical transmission and the optical band gap of the films decrease with an increase in the doping degree. The values of optical transmission of the films can reach from 45 % to 65 % in the visible range. The values of optical gap are varied between 3.62 eV and 3.69 eV.

Keywords: 
NiO, zinc doping, spray pyrolysis, XRD, optical band gap.
References: 
1. Y.Li, R.Yao, H.Wang et al., ACS Appl. Mater. Inter., 9, 11711 (2017).
https://doi.org/10.1021/acsami.7b02609
 
2. H.Kawazoe, M.Yasukawa, H.Hyodo et al., Nature, 389, 939 (1997).
https://doi.org/10.1038/40087
 
3. G.Thomas, Nature, 389, 907 (1997).
https://doi.org/10.1038/39999
 
4. M.M.Gomaa, G.R.Yazdi, S.Schmidt et al., Mater. Sci. Semicon. Proc., 64, 32 (2017).
https://doi.org/10.1016/j.mssp.2017.03.009
 
5. Z.T.Khodair, B.A.Ibrahim, M.K.Hassan, Mater. Today, 20, 560 (2020).
https://doi.org/10.1016/j.matpr.2019.09.189
 
6. T.Chtouki, L.Soumahoro, B.Kulyk et al., Optik, 128, 8 (2017).
https://doi.org/10.1016/j.ijleo.2016.10.007
 
7. R.Sharma, A.D.Acharya, S.B.Shrivastava et al., Optik, 125, 6751 (2014).
https://doi.org/10.1016/j.ijleo.2014.07.104
 
8. B.Subramanian, M.M.Ibrahim, V.Senthilkumar et al., Physica B, 403, 4104 (2008).
https://doi.org/10.1016/j.physb.2008.08.014
 
9. C.C.Wu, C.F.Yang, Nanoscale. Res. Lett., 8, 33 (2013).
https://doi.org/10.1186/1556-276X-8-33
 
10. A.Dihaa, S.Benramache, B.Benhaoua, Optik-Int. J. Light Elect. Optics, 172, 832 (2018).
https://doi.org/10.1016/j.ijleo.2018.07.062
 
11. R.Sharma, A.D.Acharya, S.B.Shrivastava et al., Optik - Int. J. Light Elect. Optics, 127, 4661 (2016).
https://doi.org/10.1016/j.ijleo.2016.01.050
 
12. J.H.Lee, Y.W.Noh, I.S.Jin, J.W.Jung, Electrochim. Acta, 284, 253 (2018).
https://doi.org/10.1016/j.electacta.2018.07.178
 
13. S.C.Chen,T.Y.Kuo, H.C.Lin et al., Appl. Surf. Sci, 508, 145106 (2020).
https://doi.org/10.1016/j.apsusc.2019.145106
 
14. D.Singh, A.Das, R.S.Ajimsha et al., Mater. Sci. Semicon. Proc., 66, 186 (2017).
https://doi.org/10.1016/j.mssp.2017.04.025
 
15. W.Li, X.Zhang, X.Chen et al., Mater. Lett., 265, 127464 (2020).
https://doi.org/10.1016/j.matlet.2020.127464
 
16. M.R.Das, A.Mukherjee, P.Mitra, Physica E, 93, 243 (2017).
https://doi.org/10.1016/j.physe.2017.06.018
 
17. K.Sajilal, A.M.E.Raj, Mater. Lett., 164, 547 (2016).
https://doi.org/10.1016/j.matlet.2015.11.065
 
18. S.R.Ardekani, A.S.R.Aghdam, M.Nazari et al., J. Anal. Appl. Pyrol., 141, 104631 (2019).
https://doi.org/10.1016/j.jaap.2019.104631
 
19. L.Cattin, B.A.Reguig, A.Khelil et al., Appl. Surf. Sci., 254, 5814 (2008).
https://doi.org/10.1016/j.apsusc.2008.03.071
 
20. A.D.Acharya, S.Moghe, R.Panda et al., Thin Solid Films, 525, 55 (2012).
https://doi.org/10.1016/j.tsf.2012.10.100
 
21. R.Swanepoel, J. Phys. E: Sci. Instrum., 16, 1214 (1983)
https://doi.org/10.1088/0022-3735/16/12/023
 
22. E.R.Shaaban, I.S.Yahia, E.G.El-Metwally, Acta. Phys. Pol A., 121, 628 (2012).
https://doi.org/10.12693/APhysPolA.121.628
 
23. C.Thangamani, K.Pushpanathan, J. Chem. Pharm. Res., 8, 749 (2016).
 
24. Y.M.Lu, W.S.Hwang, J.S.Yang, H.C.Chuang, Thin Solid Films, 420-421, 54 (2002).
https://doi.org/10.1016/S0040-6090(02)00654-5
 
25. F.S.Hashim, N.A.Sami, Int. Lett. Chem. Phys. Astr., 53, 31 (2015).
https://doi.org/10.18052/www.scipress.com/ILCPA.53.31
 
26. S.Benramache, B.Benhaoua, Superlattice. Microst., 52, 807 (2012).
https://doi.org/10.1016/j.spmi.2012.06.005
 
27. H.Wanga, D.Mishra, P.Chen, J.Ting, J. Alloy. Compd., 584, 142 (2014).
https://doi.org/10.1016/j.jallcom.2013.08.142
 
28. T.Mahalingam, V.Dhanasekaran, R.Chandramohan, J.K.Rhee, J. Mater. Sci., 47, 1950 (2012).
https://doi.org/10.1007/s10853-011-5989-3
 
29. S.Prabahar, M.Dhanam, J. Cryst. Growth. 285 41 (2005).
https://doi.org/10.1016/j.jcrysgro.2005.08.008
 
30. I.Manouchehri, S.A.O.Alshiaa, D.Mehrparparvar et al., Optik, 127, 9400 (2016).
https://doi.org/10.1016/j.ijleo.2016.06.092
 
31. F.Ynineb, A.Hafdallah, M.S.Aida et al., Mater. Sci. Semicon. Proc., 16, 2021 (2013).
https://doi.org/10.1016/j.mssp.2013.07.023
 
32. S.Benhamida, B.Benhaoua, R.Barir et al., J. Nano-Elec. Phys., 9, 03004 (2017).
https://doi.org/10.21272/jnep.9(3).03004
 
33. H.Sato, T.Minami, S.Takata, T.Yamada, Thin Solid Films, 236, 27 (1993).
https://doi.org/10.1016/0040-6090(93)90636-4
 
34. Y.Igasaki, H.Saito, J. Appl. Phys., 69, 2190 (1991).
https://doi.org/10.1063/1.348748
 
35. W.S.Lau, S.J.Fonash, J. Electron.Mater., 16, 141 (1987).
https://doi.org/10.1007/BF02655478
 
36. J.D.Merchant, M.Cocivera, Chem. Mater., 7, 1742 (1995).
https://doi.org/10.1021/cm00057a026
 

Current number: