Funct. Mater. 2021; 28 (4): 676-682

doi:https://doi.org/10.15407/fm28.04.676

Study on the effect of TiN deposition conditions on the features of texture formation in the two-layer system TiN/Ni0.905W0.095 suitable for creating paramagnetic substrates with cubic texture for 2G HTS superconductors

T.V.Sukhareva, M.S.Sunhurov, V.A.Finkel , Yu.N.Shahov

National Scientific Center "Kharkov Institute of Physics and Technology", National Academy of Sciences of Ukraine, 1 Akademicheskaya Str., 61108 Kharkov, Ukraine

Abstract: 

The influence of TiN deposition conditions on the morphology and structure of the TiN/Ni0.905W0.095 two-layer system was studied. The effect of the simultaneous formation of a cubic texture both in the TiN coating and in the substrate based on the Ni0.905W0.095 paramagnetic alloy was detected using X-ray diffraction analysis. The composition TiN/Ni0.905W0.095 can be used as a substrate in the conductive architecture of 2G HTS to improve its critical current density.

Keywords: 
2G HTS, superconductivity, cubic texture, TiN, Ni-W, buffer layer, paramagnetic substrate.
References: 
1. J.G.Bednorz, K.A.Muller, Z. Physik B - Condensed Matter., 64, 189 (1986).
https://doi.org/10.1007/BF01303701
 
2. M.W.Rupich, X.Li, C.Thieme et al., Supercond. Scien. Techn., 23, 014015 (2009).
https://doi.org/10.1088/0953-2048/23/1/014015
 
3. M.Paranthaman, C.Park, X.Cui et al., J. . Mater. Res. 15, 2647 (2000).
https://doi.org/10.1557/JMR.2000.0379
 
4. M.W.Rupich, U.Schoop, D.T.Verebelyi et al., IEEE Trans. Appli. Supercond,, 13, 2458 (2003).
https://doi.org/10.1109/TASC.2003.811820
 
5. D.Larbalestier, A.Gurevich, D.Feldmann et al., Nature, 414, 368 (2001).
https://doi.org/10.1038/35104654
 
6. W.V.Hassenzahl, IEEE Trans, Appli. Supercond., 11, 1447 (2001).
https://doi.org/10.1109/77.920045
 
7. M.Wilson, Superconducting Magnets, Clarendon, Oxford (1983).
 
8. T.Pyon, T.E.Gregory, IEEE Trans. Appl. Supercond., 11, 3688 (2001).
https://doi.org/10.1109/77.919865
 
9. Y.Shiohara, T.Taneda, M.Yoshizumi, Jpn. J. Appl. Phis., 51, 010007 (2012).
https://doi.org/10.1143/JJAP.51.010007
 
10. A.P.Malozemoff, S.Annavarapu et al., Supercond. Sci. Technol., 13, 473 (2000).
https://doi.org/10.1088/0953-2048/13/5/308
 
11. A.Goyal. Epitaxial Superconductors on Rolling-Assisted-Biaxially-Textured-Substrates (RABiTS). In: Goyal A. (eds), Second-Generation HTS Conductors. Springer, Boston, MA (2005).
 
12. E.D.Specht, A.Goyal et al., Supercond. Sci. Technol., 11, 945 (1998).
https://doi.org/10.1088/0953-2048/11/10/009
 
13. M.Paranthaman, A.Goyal, F.List et al., Physica C: Superconductivity, 275, 3-4, 266272 (1997).
https://doi.org/10.1016/S0921-4534(96)00713-7
 
14. M.K.Wu et al., Phys. Rev. Lett., 58, 908 (1987).
https://doi.org/10.1103/PhysRevLett.58.908
 
15. J.Eickemeyer, D.Selbmann, R.Huhne et al., Appl. Phys. Lett., 90, 012510 (2007).
https://doi.org/10.1063/1.2429905
 
16. D.P.Norton, A.Goyal, J.D.Budai et al., Science, 274, 755 (1996).
https://doi.org/10.1126/science.274.5288.755
 
17. Y.Iijima, K.Onabe, N.Futaki et al., J. Appl. Phys, 74, 1905 (1993).
https://doi.org/10.1063/1.354801
 
18. A.Goyal, D.P.Norton, J.D.Budai et al., Appl. Phys. Lett., 69, 1795 (1996).
https://doi.org/10.1063/1.117489
 
19. R.Huhne, D.Selbmann, J.Eickemeyer et al., Supercond. Sci. Technol., 19, 169 (2006).
https://doi.org/10.1088/0953-2048/19/2/003
 
20. R.Huhne, S.Fahler, B.Holzapfel, Appl. Phys. Lett., 85, 2744 (2004).
https://doi.org/10.1063/1.1802385
 
21. R.Gartner, R.Huhne, J.Engelmann et al., IEEE Trans. Appl .Supercond., 21, 2920 (2010).
https://doi.org/10.1109/TASC.2010.2080657
 
22. K.Guth, R.Huhne, V.Matias et al., IEEE Trans. Appl. Supercond., 19, 3447 (2009).
https://doi.org/10.1109/TASC.2009.2019249
 
23. J.R.Thompson, A.Goyal, D.K.Christen et al., Physica C: Superconductivity, 370, 169 (2002).
https://doi.org/10.1016/S0921-4534(01)00937-6
 
24. U.Gaitzsch, J.Hanisch, R.Huhne et al., Supercond. Scien. Techn., 26, 085024 (2013).
https://doi.org/10.1088/0953-2048/26/8/085024
 
25. S.V.Subramanya, J.Eickemeyer, L.Schultz et al., Scr. Mater., 50, 953 (2004).
https://doi.org/10.1016/j.scriptamat.2004.01.004
 
26. R.Huhne, J.Eickemeyer, V.S.Sarma et al., Supercond. Sci. Technol., 23, 03401 (2010).
https://doi.org/10.1088/0953-2048/23/3/034015
 
27. V.V.Derevyanko, M.S.Sungurov, T.V.Sukhareva et al., Phys. Solid State, 60, 1930 (2018).
https://doi.org/10.1134/S1063783418100062
 
28. F.A.Mohamed, Mater. Scie. Engin., 38, 73 (1979).
https://doi.org/10.1016/0025-5416(79)90034-X
 
29. V.A.Finkel, A.M.Bovda, V.V.Derevyanko et al., Functional Materials, 19, 109 (2012).
 
30. V.A.Finkel, V.V.Derevyanko, M.S.Sungurov et al., Functional Materials, 20, 103 (2013).
https://doi.org/10.15407/fm20.01.103
 
31. I.I.Aksenov, V.M.Khoroshikh, N.S.Lomino et al., IEEE Trans. Plasma Sci., 27, 1026 (1999).
https://doi.org/10.1109/27.782275
 
32. M.S.Sungurov, V.V.Derevyanko, S.A.Leonov et al., Tech. Phys. Lett., 40, 797 (2014).
https://doi.org/10.1134/S1063785014090314
 
32. H.Friedman, L.S.Birks, Review of Scientific Instruments, 17, 99 (1946).
https://doi.org/10.1063/1.1770449
 
33. I.Tomov, S.Vasiliev, Solid State Phenomena, 130, 43 (2007).
https://doi.org/10.4028/www.scientific.net/SSP.130.43
 
34. V.A.Finkel, T.V.Sukhareva, M.S.Sungurov, Low Temp. Phys., 46, 594 (2020).
https://doi.org/10.1063/10.0001241

Current number: