Funct. Mater. 2021; 28 (4): 683-688

doi:https://doi.org/10.15407/fm28.04.683

Possible conversion of the charge carriers in high-entropy alloy Al0.5CoCuCrNiFe

V.N.Voyevodin , V.A.Frolov, E.V.Karaseva, A.V.Mats, E.S.Savchuk, V.I.Sokolenko, T.M.Tikhonovskaya, A.S.Tortika

National Science Center Kharkiv Institute of Physics and Technology, 61108 Kharkiv, Ukraine,

Abstract: 

A complex study of the temperature dependences of electrical conductivity, thermo-EMF and thermal conductivity in the high-entropy alloy Al0.5CoCuCrNiFe have been carried out in order to established the nature of the anomalies of the kinetic coefficients in the temperature range ~ 300...77 K. It is shown that, as the temperature is lowered from ~ 210 K to ~ 170 K, these characteristics exhibit anomalies, the signs of which indicate an increase in the rate of growth of electrical conductivity and a slowdown in the decrease in thermoelectric power and thermal conductivity. A concept is proposed to explain the discovered anomalies by the hole-electron (h → e) conversion in the carrier system. Data on the effect of rolling deformation on kinetic coefficients have been obtained.

Keywords: 
high-entropy alloy, kinetic coefficients, conversion and mobility of charge carriers, plastic deformation.
References: 
1. K.H.Huang, M.S. thesis, Department of Mat. Sci. Eng., NTHU, Taiwan (1996).
 
2. Patent US 2002/0159914A1 (2000).
 
3. J.-W.Yeh, S.-K.Chen, S.-J.Lin et al., Adv. Eng. Mat., 6, 299 (2004).
https://doi.org/10.1002/adem.200300567
 
4. M.A.Laktionova, E.D.Tabachnikova, Z.Tang, P.K.Liaw, Low. Temp. Phys., 39, 630 (2013).
https://doi.org/10.1063/1.4813688
 
5. Ju.A.Semerenko, E.D.Tabachnikova, T.M.Tichonovskaya et al., Metallophisika i Noveishie Technologii, 37, 1527 (2015).
https://doi.org/10.15407/mfint.37.11.1527
 
6. E.D.Tabachnikova, M.A.Laktionova, Yu.A.Semerenko et al., Low Temp. Phys., 43, 1108 (2017).
https://doi.org/10.1063/1.5004457
 
7. A.S.Bulatov, V.S.Klochko, A.V.Korniets et al., XII Mezhd konf. "Fizychni Yavyshcha v Tverdych Tilach", 89. Kharkiv (2015) [in Russian].
 
8. V.N.Voyevodin, V.A.Frolov, E.V.Karaseva et al., Probl. Atom. Sci. Technol. Ser.: "Vacuum, Pure metals, Superconductors", 1, 78 (2020).
 
9. V.K.Grigorovich, Metallicheskaya Svyaz i Structura Metallov, Nauka, Moscow (1988) [in Russian].
 
10. R.H.Kropshot, F.J.Blatt, Phys. Rev., 116, 617 (1959).
https://doi.org/10.1103/PhysRev.116.617
 
11. A.F.Ioffe, Poluprovodniki v Sovremennoy Fizike, Izd. AN SSSR, Moscow-Leningrad (1954) [in Russian].
 
12. V.A.Frolov, V.I.Sokolenko, Zh. Exper. Teor. Fiz. Pis'ma, 107, 418 (2018).
https://doi.org/10.1134/S0021364018070020
 
13. M.M.Popov, Termometriya i Kalorimetriya, Izd. Mosk. Un-ta, Moskva (1954) [in Russian].
 
14. D.G.Shaysultanov, N.D.Stepanov, A.V.Kuznetsov et al., J. Metals, 65, 1815 (2013).
https://doi.org/10.1007/s11837-013-0754-5
 
15. Ch.Ng, Sh.Guo, J.Luan et al., Intermetallics, 31, 165 (2012).
https://doi.org/10.1016/j.intermet.2012.07.001
 
16. P.C.Chu, M.S.Thesis, Department of Material Science and Engineering, NTHU (2009).
 
17. Y.Kao, S.Chen, T.Chen et al., J. Alloys Comp., 509, 1607 (2011).
https://doi.org/10.1016/j.jallcom.2010.10.210
 
18. J.M.Ziman, Principles of the Theory of Solids, Cambridge (1972).
https://doi.org/10.1017/CBO9781139644075
 
19. A.M.Kosevich, Low Temp. Phys., 30, 97 (2004).
https://doi.org/10.1063/1.1645161

Current number: