Funct. Mater. 2021; 28 (4): 689-693

doi:https://doi.org/10.15407/fm28.04.689

Effect of pH on the interparticle magnetic interaction in ensembles of barium hexaferrite particles

I.A.Vedernykova1, A.A.Koval1, M.M.Ivashura1, A.A.Ivashura2, O.M.Borysenko2

1National University of Pharmacy, 53 Pushkinska St., 61002 Kharkiv, Ukraine
2Simon Kuznets Kharkiv National University of Economics, 9a Nauky Ave., 61000 Kharkiv, Ukraine

Abstract: 

The pH effect on the parameter of interparticle magnetic interaction of a compacted system of oxide ferromagnet is studied. An unpredictable change in the sign of the interparticle interaction parameter Δm at 300 K was found after the surface of microcrystals was treated with of acid and alkali solutions. The observed effect confirms the decisive role of surface spins in the interparticle interaction.

Keywords: 
interparticle magnetic interaction, barium hexaferrite, pH effect.
References: 
1. V.Koppisetti, B.Sahiti, Int. J. Drug Develop. Res., 3, 260 (2011).
 
2. P.Lokwani, Int. J. Res. Pharm. Biomed. Sci., 2, 465 (2001).
 
3. J.Agnihotri, S.Saraf, A.Khale, Int. J. Pharm. Sci. Rev. Res., 8, 117 (2011).
 
4. T.K.Indira, P.K.Lakshmi, Int. J. Pharm. Sci. Nanotechn., 3, 1035 (2010).
 
5. D.Emerich, C.Thanos, J. Drug Target, 15, 163 (2007).
https://doi.org/10.1080/10611860701231810
 
6. G.Goya, V.Grazu, M.Ibarra, Current Nanosci., 4, 801 (2008).
https://doi.org/10.2174/157341308783591861
 
7. I.A.Vedernikova, Rev. J. Chem., 5, 289 (2015).
https://doi.org/10.1134/S2079978015030036
 
8. I.Vedernikova, Int. J. Pharmtech. Res., 8, 394 (2015).
 
9. I.Vedernikova, Int. J. Pharm. Pharm. Sci., 7, 177 (2015).
 
10. I.Vedernykova, Ye.Levitin, L.Klimenko, Pharmakeftiki, 3, 133 (2020).
 
11. G.Muscas, G.Concas, S.Laureti et al., Chem. Chem. Phys., 20, 28634 (2018).
https://doi.org/10.1039/C8CP03934H
 
12. M.S.Seehra, H.Shim, P.Dutta et al., J. Appl. Phys., 97, 1063 (2005). https://doi.org/ 10.1063/1.1854911
https://doi.org/10.1063/1.1854911
 
13. A.Abu-Bakr, A.Zubarev, Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 377, (2019), https://royalsocietypublishing.org/ doi/10.1098/rsta.2018.0216.
https://doi.org/10.1098/rsta.2018.0216
 
14. M.Knobel, W.C.Nunes, H.Winnischofer, J. Non-Crystall. Solids, 353, 743 (2007).
https://doi.org/10.1016/j.jnoncrysol.2006.12.037
 
15. S.Morup, M.Hansen, C.Frandsen, Beilstein J. Nanotechnol., 1, 182 (2010).
https://doi.org/10.3762/bjnano.1.22
 
16. I.A.Vedernykova, A.A.Koval, O.V.Antonenko et al., J. Pharm. Sci. Res., 10, 2122 (2018).
 
17. O.Henkel, Phys. Status Solidi, 7, 919 (1964).
https://doi.org/10.1002/pssb.19640070320
 
18. E.P.Wohlfarth, J. Appl. Phys., 29, 595 (1958).
https://doi.org/10.1063/1.1723232
 
19. P.E.Kelly, K.O'Grady, P.L.Mayo et al., IEEE Trans. Magn., 25, 3881 (1989).
https://doi.org/10.1109/20.42466

Current number: