Funct. Mater. 2021; 28 (4): 694-700

doi:https://doi.org/10.15407/fm28.04.694

Research of properties of AlB12-Al electric spark coatings on VT1-0 titanium alloy

A.P.Umanskyi1, M.S.Storozhenko1, V.E.Sheludko1, V.B.Muratov1, V.V.Kremenitsky2, I.S.Martsenyuk1, M.A.Vasilkovskaya1, A.D.Kostenko1, A.A.Vasiliev1, A.E.Terentiev1

1I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03142 Kyiv, Ukraine
2+Technical Center, National Academy of Sciences of Ukraine, 13 Pokrovskaya Str., 04070 Kyiv, Ukraine

Abstract: 

The article investigates the kinetics of mass transfer of the electrode material AlB12-50 wt.% Al during electrospark alloying (ESA) of the titanium alloy VT1-0, as well as the structure and properties of the resulting coating. The coating was applied using an ALIER-52 installation. The thickness (340 μm), microhardness (4-8 GPa) and wear rate were determined. The coating is multiphase: Ti aluminide, Ti and Al oxides, Ti and TiB2 are found. The wear of the ESA-coated specimens is shown to be much less than that of the uncoated one. A conclusion is made about the possibility of using this electrode material for ESA process.

Keywords: 
ESA, mass transfer kinetics, structure, phase composition, microhardness, wear rate.
References: 
1. B.A.Kolachev, V.I.Elagin, V.A.Livanov, Metal Science and Heat Treatment of Non-ferrous Metals and Alloys, MISIS, Moscow (1999) [in Russian].
 
2. I.V.Gorynin, S.S.Ushakov, A.N.Khatuntsev et al., Titanium Alloys for Marine Engineering, Polytekhnika, St. Petersburg (2007) [in Russian].
 
3. Titanium and Titanium Alloys: Fundamentals and Applications, ed. by C.Leyens, M.Peters, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim (2003).
 
4. Yu.P.Reshetnikov, Titan, 1-2, 9 (1995).
 
5. S.L.Antonyuk, A.G.Molyar, A.N.Kalinyuk et al., Adv. Electrometallurgy, 1, 9 (2003).
 
6. ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys, ed. by G.E.Totten, Materials Park, Ohio, USA: ASM International (2016).
 
7. Lai-Chang Zhang, Liang-Yu Chen, Liqiang Wang, Adv. Eng. Mater., 22, 1901258 (2020). https://doi.org/10.1002/adem.201901258.
https://doi.org/10.1002/adem.201901258
 
8. S.N.Bratushka, L.V.Malikov, VANT, 6, 126 (2011).
 
9. S.Panin, V.Vlasov, D.Dudina, Metals, 7, 355 (2017). htpss://doi.org/10.3390/met7090355.
https://doi.org/10.3390/met7090355
 
10. Hailiang Du, Ning Tan, Li Fan et al., Materials, 12, 3097 (2019). htpss://doi.org/10.3390/ma12193097.
https://doi.org/10.3390/ma12193097
 
11. V.V.Mikhailov, A.E.Gitlevich, A.D.Verkhoturov, Surf. Eng. Appl. Elect., 49, 373 (2013). htpss://doi.org/10.3103/S1068375513050074
https://doi.org/10.3103/S1068375513050074
 
12. A.D.Verkhoturov, I.A.Podchernyaeva, L.F.Pryadko et al., Electrode Materials for Electrospark Alloying, Nauka, Moscow (1988) [in Russian].
 
13. A.D.Verkhoturov, S.V.Nikolenko, Strength. Technol. Coat., 2, 13 (2010).
 
14. A.D.Verkhoturov, V.I.Ivanov, L.A.Konevtsov, Surf. Eng. Appl. Elect., 55, 241 (2019). htpss://doi.org/10.3103/S1068375519030165.
https://doi.org/10.3103/S1068375519030165
 
15. O.O.Vasiliev, V.B.Muratov, T.I.Duda, Fizika i Khimiya Tverdogo Tila, 18, 358 (2017).
https://doi.org/10.15330/pcss.18.3.358-364
 
16. P.S.Kisly, V.A.Neronov, T.A.Prikhna et al., Aluminum Borides, Naukova Dumka, Kiev (1990).
 
17. T.A.Prikhna, P.P.Barvitskyi, M.V.Karpets et al., J. Superhard Mater., 39, 299 (2017). htpss://doi.org/10.3103/S106345761705001X.
https://doi.org/10.3103/S106345761705001X
 
18. UA Patent 107259 (2016).
 
19. G.N.Dulnev, Yu.P.Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials, Energiya, Leningrad (1974) [in Russian].
 
20. L.S.Palatnik, Dokl. Acad. Nauk SSSR, LXXXIX, 455 (1953).
 
21. O.S.Manakova, A.E.Kudryashov, E.A.Levashov, Surf. Eng. Appl. Elect., 51, 413 (2015). htpss://doi.org/10.3103/S1068375515050117
https://doi.org/10.3103/S1068375515050117
 
22. metallicheckiy-portal.ru/marki_metallov/tit/VT1-0
 
23. V.I.Ivanov, A.D.Verkhoturov, L.A.Konevtsov, Surf. Eng. Appl. Elect., 53, 218 (2017). htpss://doi.org/10.3103/S1068375517030061
https://doi.org/10.3103/S1068375517030061
 
24. V.S.Kovalenko, A.D.Verkhoturov, L.F.Golovko et al., Laser and Electroerosion Hardening of Materials, Nauka, Moscow (1986) [in Russian].
 
25. T.Atoda, I.Higashi, M.Kobayashi, Sci. Pap. Inst. Phys. Chem. Res., 61, 92 (1967).
 
26. M.Sadhasivam, N.Mohan, S.R.Sankaranarayanan et al., Mater. Res. Express., 7, 016545 (2020). htpss://doi.org/10.1088/2053-1591/ab6488.
https://doi.org/10.1088/2053-1591/ab6488
 
27. R.G.Munro, J. Res. Natl. Inst. Stan., 105, 709 (2000). doi.org/10.6028/jres.105.057
https://doi.org/10.6028/jres.105.057
 
28. S.A.Pyachin, T.B.Ershova, A.A.Burkov et al., Russ. J. Non-Ferr. Met., 57, 266 (2016). htpss://doi.org/10.3103/S1067821216030135.
https://doi.org/10.3103/S1067821216030135
 
29. Shao-Guang Liu, Jin-Ming Wu, Sheng-Cai Zhang et al., Wear, 262, 555 (2007). htpss://doi.org/10.1016/j.wear.2006.06.021.
https://doi.org/10.1016/j.wear.2006.06.021
 
30. Yang Liu, Wensheng Liu, Yunzhu Ma et al., Surf. Coat. Technol., 353, 32 (2018). htpss://doi.org/10.1016/j.surfcoat.2018.08.067.
https://doi.org/10.1016/j.surfcoat.2018.08.067

Current number: