Funct. Mater. 2021; 28 (4): 701-708

doi:https://doi.org/10.15407/fm28.04.701

Investigation of the glass formation region and optical properties of the phases obtained in the As2S3-CdSe system

I.I.Aliyev1, C.A.Ahmedova2, N.N.Mursakulov3, N.N.Abdulzade3, I.I.Abbasov4, A.L.Bakhtiyarov4, Kh.M.Gashmov5

1M.Nagiyev Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences
2Adiyaman State University Faculty of Arts and Sciences, Department of Chemistry, Turkey
3Institute of Physics, National Academy of Sciences of Azerbaijan
4Azerbaijan State Oil and Industry University
5Azerbaijan State University of Economics

Abstract: 

The As2S3-CdSe system was studied using differential thermal, X-ray diffraction, microstructure analyses, as well as microhardness and density measurements, and a phase diagram was constructed. It was established that a new Cd3As2S3Se3 compound is formed in the system which crystallizes in the rhombic syngony with the unit cell parameters: a = 0.618; b = 1,424; c = 0.782 nm, Z = 3, ρpycn. = 4.95.103 kg/m3; ρX-ray = 5.04·103 kg/m3. In the As2S3-CdSe system, the boundaries of the glass region formed on the basis of As2S3 were determined. It was revealed that in the mode of slow cooling, the glass formation region on the basis of As2S3 extends to 15 mol. % CdSe, and in the quenching mode in air, it is 20 mol. % CdSe. For the Cd3As2S3Se3 compound, the spectral distribution of the photocurrent is investigated as a function of the wavelength. The temperature dependence of the electrical conductivity of glassy alloys with 5, 10, 15, 20 and 25 mol.% CdSe was investigated in the temperature range of 290-450 K. A nanostructured thin film of Cd3As2S3Se3 compound was obtained by vacuum deposition, and optical properties were studied. When adding low-resistance alloys with 5, 10, 15, 20 and 25 mol. % CdSe in the composition of the high-resistance compound As2S3, the electrical conductivity of the alloys increases depending on the composition and temperature.

Keywords: 
system, chalcogenides, phase diagram, semiconductors, solidus.
References: 
1. RF Patent 845685 (1980).
 
2. P.A.Viktor, V.V.Zotov, V.V.Serdyuk, FTP, 13, 897 (1979).
https://doi.org/10.1021/es60156a700
 
3. G.A.Kitaev, V.F.Markov, L.N.Maskayeva, Izv. Acad. Sci. USSR. Inorg. Mater., 26, 248 (1990).
 
4. N.E.Korsunskaya, I.V.Markevich, A.M.Pavelets et al., UFJ, 26, 1335 (1981).
 
5. P.Hari, C.Cheneya, G.Luepkea et al., J. Non-Cryst. Solids, 270, 265 (2000).
https://doi.org/10.1016/S0022-3093(00)00072-7
 
6. Dinesh Chandra SATI1, Rajendra Kumar, Ram Mohan Mehra, Turk. J. Phys., 30, 519 (2006).
 
7. M.S.Iovu, S.D.Shutov, S.Z.Rebeja et al., J. Optoelectron. Adv. M., 2, 53 (2000).
 
8. T.Hineva, T.Petkova, C.Popov et al., J. Optoelectron. Adv. M., 9, 326 (2007).
 
9. Seema Kandpalm, R.P.S.Kushwaha, Indian Academy Sci. PRAM ANA J. Phys., 69, 481 (2007).
https://doi.org/10.1007/s12043-007-0150-1
 
10. I.C.M.Littler, L.B.Fu, E.C.Magi et al., Opt. Express, 4, 8088, (2006).
https://doi.org/10.1364/OE.14.008088
 
11. P.Boolchand, D.G.Georgiev, M.S.Iovu, Chalc. Lett., 2, 27 (2005).
 
12. M.S.lovu, P.Boolchand, D.G.Georgiev, J. Optoelectron. Adv. M., 7, 763 (2005).
 
13. T.Kavetskyya, B.Borcs, J.K.Sangwa, J. Optoelectron. Adv. M., 5, 755 (2011).
 
14. D.Lezal, J.Zavadil, P.Kostka et al., J. Non-Cryst. Solids, 326, 47 (2003).
https://doi.org/10.1016/S0022-3093(03)00375-2
 
15. A.M.Andriesh, V.I.Verlan, J. Optoelectron. Adv. M., 3, 455 (2001).
 
16. V.I.Verlan, J. Optoelectron. Adv. M., 5, 1121 (2003).
 
17. M.lovu, S.Shutov, M.Popescu et al., J. Optoelectron. Adv. M., 1, 15 (1999).
 
18. Erwan Guillevic, Xianghua Zhang, Jean-Luc Adam et al., J. Non-Cryst. Solids, 357, 2897 (2011).
https://doi.org/10.1016/j.jnoncrysol.2011.03.030
 
19. M.Barj, O.A.Mykavlo, D.I.Kaynts et al., J. Non-Cryst. Solids, 357, 2232 (2011).
https://doi.org/10.1016/j.jnoncrysol.2010.11.095
 
20. A.V.Stronski, M.Vlcek, A.I.Stetsun et al., J. Non-Cryst. Solids, 270, 129 (2000).
https://doi.org/10.1016/S0022-3093(00)00002-8
 
21. P.Hari, C.Cheney, G.Luepke et al., J. Non-Cryst. Solids, 270, 265 (2000).
https://doi.org/10.1016/S0022-3093(00)00072-7
 
22. I.I.Aliyev, Doct. Dissertation, Baku (1992).
 
23. P.G.Rustamov, I.I.Aliyev, Zh. Neorg. Khimii, 31, 771 (1986).
 
24. I.I.Aliev, B.B.Kuliev, A.P.Gurshumov et al., Zh. Neorg. Khimii, 33, 1618 (1988).
 
25. A.S.Okhotin, A.S.Pushkarsky, R.P.Borovikova et al., Methods for Measuring the Characteristics of Thermoelectric Materials and Converters, Nauka, Moscow (1974) [in Russian].
 
26. S.M.Ryvkin. Photoelectric Phenomena in Semiconductors. Fizmatgiz, Moscow (1963) [in Russian].
 
27. V.I.Gavrilenko, A.M.Grekhov, D.V.Korbutyak et al., Optical Properties of Semiconductors: a Handbook, Naukova Dumka, Kiev (1987).

Current number: